

Your world of chromatography

predictability

LC Columns and Accessories

As a leader in LC column technology including silica, polymer and porous graphitic carbon manufacturing, bonded phase production and column packing for over 35 years, you can rely on the quality of Thermo Scientific HPLC products. Here we showcase our latest and most comprehensive range of innovative columns, accessories and equipment for fast LC, analytical HPLC and biomolecule separations.

Section Contents

Introduction	4-001
Column Selection	4-002
Column Protection	<mark>4-01</mark> 6
Columns for Fast and Analytical LC	<mark>4-022</mark>
Columns for Biomolecules	<mark>4</mark> -110

Syncronis Columns

PAGE 4-074

Consistent, reproducible separations,

column after column, time after time

LC Accessories	58
LC Equipment	36
LC Reagents	93
LC and LC-MS Instrument Parts 4-20)9
Technical Information 4-23	81

Featured Products

Accucore Columns

Ultimate core performance - speed and selectivity combined

>> PAGE 4-042

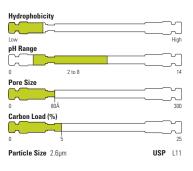
MAbPac Columns

Unrivalled resolution and efficiency in the analysis of protein variants

Hypersil GOLD Columns

Outstanding peak shape for your separations

Viper Connectors Simple, dead volume free plumbing of HPLC and UHPLC systems


LC Column Selection

Information in the following section will help you make an informed decision on the appropriate HPLC column for your application, based on stationary phase use, analyte properties, LC-MS requirements or USP specifications. You will also find a useful table of Thermo Scientific phases with specifications, as well as recommended Thermo Scientific alternatives for other popular columns.

Refer to the **Advanced User Graphic** (AUG) on the corresponding product page (illustrated to the right) for more help and information on general purpose column selection.

The AUG will show you Hydrophobicity which gives the relative retention on the column. Generally, the higher the hydrophobicity, the greater the retention of neutral compounds and the higher the organic content in the mobile phase. A lower value indicates a need for higher aqueous mobile phases to achieve comparable retention and resolution. The recommended pH Range for the column is illustrated, outside of which column lifetimes will diminish. The Pore Size is shown, with larger pore size columns being more applicable to larger analytes such as proteins or peptides. The percentage Carbon Load is related to the hydrophobicity. Below the icon, you will see the particle sizes available, as well as the USP code. These graphics are designed to allow you to quickly compare the main characteristics of multiple stationary phases, allowing you to choose quickly the most appropriate stationary phase for your analysis.

For additional help in column selection, please see the back cover to contact our expert Technical Support and tap into our expertise to help make the best choice for your application.

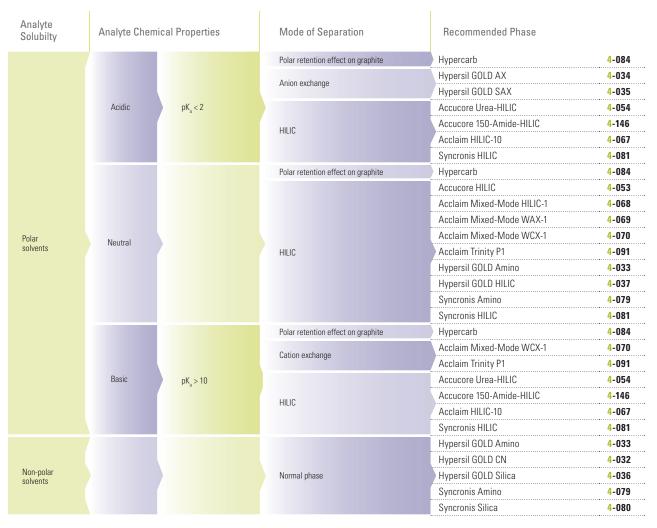
Advanced User Graphic (AUG)

Common HPLC Phases and Their Uses

Common Name	Alternative Name	Functional Group	Normal Phase	Reverse Phase	lon Exchange	HILIC	Application
Silica	Silica	-0H	•			•	Non-polar and moderately polar organic compounds.
C1	SAS	-(CH ₃) ₃		•			Least retentive of all alkyl group bonded phases for non-polar solutes. Typically used for moderately polar and multi-functional compounds.
C4	Butyl	-C ₄ H ₉		•			Shorter retention than C8, C18. Separation of peptides and proteins.
С8	MOS	-C ₈ H ₁₇		•			Less retentive than C18; normally used for small peptides and proteins, pharmaceuticals, steroids, environmental samples.
C18	ODS	-C ₁₈ H ₃₇		•			Most retentive of the alkyl-bonded phases. Used widely for pharmaceuticals, steroids, fatty acids, phthalates, environmental etc.
Cyano	CPS, CN	-(CH ₂) ₃ CN	•	•			Unique selectivity for polar compounds, more suitable than base silica for normal phase gradient separations. When used in reversed phase, the selectivity is different to that of the C8 and C18 phases. Useful for a wide range of pharmaceutical applications and for mixtures of very different solutes.
Amino	APS	-(CH ₂) ₃ NH ₂	•	•	•	•	HILIC: Carbohydrate analysis and other polar compounds. Weak anion exchange: anions and organic acids. Normal Phase: Alternative selectivity to silica. Good for aromatics.
Phenyl		-(CH ₃)C ₆ H ₅		٠			Aromatic compounds and moderately polar compounds.
Pentafluo- rophenyl	PFP	-C ₆ F ₅		•			Extra selectivity and retention for halogenated, polar compounds and isomers.
Diol		-(CH ₂) ₂₀ CH ₂ (CH ₂ OH) ₂	•	•		•	Reversed Phase: Proteins, peptides. Normal Phase: Similar selectivity to silica, but less polar.
SCX	Strong Cation Exchanger	-RSO ₃ H-			•		Organic bases.
SAX	Strong Anion Exchanger	-RN+(CH ₃) ₃			•		Organic acids, nucleotides and nucleosides.
AX	Anion Exchanger Polyethyleneimine (PEI)	-(CH ₂ CH ₂ NH-) _n			•		Organic acids, nucleotides and oligonucleotides.
Porous graphitic carbon	PGC	100% carbon	•	•			Particularly useful for the separation of highly polar compounds that are difficult to retain using conventional silica based columns; separation of structurally similar compounds (e.g., isomers, diastereoisomers).

Thermo Scientific Chromatography Columns and Consumables 2014-2015

HPLC Stationary Phase Column Selection


Before beginning a new analysis, consider the physical and chemical properties of the analyte(s), the mode of analysis and how the analyte(s) will interact with the surface of the chromatographic phase. To aid column selection, the following guide may be useful.

Non-polar

Analyte Solubilty	Analyte Chemical Properties	Mode of Separation	Recommended Phase	
			Acclaim Mixed-Mode WAX-1	4-069
	Acidic $pK_a > 2$	Anion exchange / Reversed-phase mixed mode	Acclaim Trinity P1	4-091
	Acidic pK _a >2 Non-polar Neutral		Accucore C18	4-045
			Accucore RP-MS	4-044
			Accucore C8	4-046
			Accucore C30	4-052
			Accucore Phenyl-Hexyl	4-049
			Acclaim 120 C18	4-061
			Acclaim 120 C8	4-062
	Non-polar	Reversed phase	Acclaim C30	4-064
			Acclaim Phenyl-1	4-063
			Hypersil GOLD	4-026
			Hypersil GOLD C8	4-027
			Hypersil GOLD C4	4-028
	Neutral		Syncronis C18	4-075
			Syncronis C8	4-076
			Accucore aΩ	4-047
			Accucore Polar Premium	4-048
			Accucore PFP	4-051
			Accucore Phenyl-X	4-050
			Acclaim PolarAdvantage	4-065
Polar	Moderately	polar Reversed phase	Acclaim PolarAdvantage II	4-066
Solvents			Hypersil GOLD aQ	4-029
			Hypersil GOLD PFP	4-030
			Hypersil GOLD Phenyl	4-031
			Syncronis aQ	4-077
			Syncronis Phenyl	4-078
			Accucore C18	4-045
			Accucore RP-MS	4-044
			Accucore C8	4-046
			Accucore C30	4-052
			Accucore Phenyl-Hexyl	4-049
			Acclaim 120 C18	4-061
		Deversed share	Acclaim 120 C8	4-062
		Reversed phase	Acclaim C30	4-064
	Basic pr _a < 10		Acclaim Phenyl-1	4-063
			Hypersil GOLD	4-026
			Hypersil GOLD C8	4-027
			Hypersil GOLD C4	4-028
			Syncronis C18	4-075
			Syncronis C8	4-076
			Acclaim Mixed-Mode WCX-1	4-070
		Cation exchange / Reversed-phase mixed mode	Acclaim Trinity P1	4-091

HPLC Stationary Phase Column Selection continued

Polar

The above table recommends columns for the separation of small molecule analytes. Column recommendations for the separation of biomolecules can be found in the table on page **4-111**

Column Format Selection for LC-MS

The Thermo Scientific range offers a broad array of column designs and stationary phases optimized for LC-MS applications. Use the following table to help you choose your column format to best meet your application needs. A variety of HPLC column hardware configurations are available, designed to give superior results for high speed, high sensitivity, high efficiency and convenience. A wide range of particle and monolithic stationary phases allows choices for optimized selectivity.

Column Hardware Selection for LC-MS

LC-MS Application	Column Hardware Design	Description
High throughput analysis	Javelin HTS columns	Direct-connection columns Slim design, 20mm length, 1mm to 4.6mm ID
High sensitivity analysis	Acclaim PepMap nano, capillary and micro columns	Nano, capillary and micro columns 0.075mm to 1mm ID; 50 to 250mm length nanoViper format offers fingertight dead volume free connection to 1000 bar
Proteomics analysis	EASY-Spray columns	Combined column/emitter design with nanoViper connection. Heated flexible silica columns 50µm and 75µm ID; 150 to 500mm length
	Acclaim PepMap nano columns, Accucore nano columns, nanoViper	nanoViper offers fingertight dead volume free connection to 1000 bar Flexible silica columns 50µm and 75µm ID; 50 to 500mm length Trap column 20mm x 100µm ID
	Acclaim PepMap nano columns, classic	Flexible silica columns 50µm and 75µm ID; 50 to 500mm length Trap column 20mm x 100µm ID
	EASY-Column	Flexible silica columns 100mm x 75µm Trap column 20mm x 100µm ID
	PepSwift monolithic columns	Flexible fused silica columns, nanoViper connections 100μm to 500μm ID, 50 to 250mm length Trap columns 5mm x 200μm ID

Various HPLC columns, throughout this LC section, can also be used for LC-MS application. Typical flow rates and MS source compatibility for these columns are shown in the table on the next page

Column Selection for LC-MS continued

Packed column selection for LC-MS

Analyte Molecular Weight	Sample Polarity	Interface Ionization	Relative Sensitivity	Column ID (mm)	Flow Rate (µL/min)	Column Hardware
		4.001	Low	4.6, 4.0, 3.0	2000 – 200	Javelin HTS, Analytical
	Low	APCI	High	2.1, 1.0	200 – 50	Analytical, Javelin HTS
		1.001	Low	4.6, 4.0, 3.0	2000 – 200	Javelin HTS, Analytical
		APCI	High	2.1, 1.0	200 – 50	Analytical, Javelin HTS
< 1000 Da	Medium	501	Low	2.1, 1.0	200 - 50	Analytical, Javelin HTS
		ESI	High	1.0 - 0.3	50 - 5	Acclaim PepMap (RSLC) capillary and micro
			riigii	0.2 - 0.05	2-0.2	EASY-Spray column, EASY-Column, Acclaim PepMap (RSLC) nano, Accucore nano
	High	501	Low	2.1, 1.0	200 – 50	Analytical, Javelin HTS
	(or ionizable)	ESI	High	1.0 - 0.3	50 – 5	Acclaim PepMap (RSLC) capillary and micro
			riigii	0.2 - 0.05	2-0.2	EASY-Spray column, EASY-Column, Acclaim PepMap (RSLC) nano, Accucore nano
1000 D		ESI	Low	2.1, 1.0	200 - 50	Analytical, Javelin HTS
> 1000 Da		ESI	High	1.0-0.3	50 – 5	Acclaim PepMap (RSLC) capillary and micro
			riigh	0.2 - 0.05	2-0.2	EASY-Spray column, EASY-Column, Acclaim PepMap (RSLC) nano, Accucore nano

Monolith columns for LC-MS

Analyte Molecular Weight	Column ID (mm)	Flow Rate (µL/min)	Column Hardware
< 1000 Da	0.1, 0.2, 0.5	0.7 – 25	PepSwift Monolith
> 1000 Da	1.0	40 - 200	ProSwift Monolith

ProSwift is also available in larger IDs for high throughput applications.

HPLC Column Selection by U.S. Pharmacopeia Specifications*

USP Code	Description	Recommended Phase	Page
L1	Octadecyl silane (C18) chemically bonded to porous	Acclaim 120 C18	<mark>4</mark> -061
		Acclaim 300 C18	4-142
		Accucore C18	4-045
		Accucore aQ	4-047
	4-144		
	Octadecyl silane (C18) chemically bonded to porous or ceramic microparticles, 1.5 to 10µm in diameter, or a monolithic rodAcclaim 120 C18 Acclaim 300 C18 Accucore C18 Accucore C18 Accucore AL C18 BioBasic 18 Hypersil GOLD aQ Acclaim PepMap 100 C18 Syncronis C18 Accucre C28 Accucre C28 Accucre C28 Accucre C3 Accucre C3 Accucre C3 Accucre C4 Accucre C4 Accucre C4 Accucre C4 Accucre C8 Accucre C8 Accucre C8 Accucre C8 Accucre C8 Accucre C8 Accucre C8 Accucre C8 Accucre C8 Accucre C91Phenyl groups chemically bonded to porous silica particles, 1.5 to 10µm in diameterHypersil GOLD CN Hypersil GOLD CN1Phenyl groups chemically bonded to porous silica particles, 1.5 to 10µm in diameterAccucre Phenyl-Hexyl Hypersil GOLD CN3Trimethylsilane chemically bonded to porous silica particles, 1.5 to 10µm in diameterHypersil GOLD SAX Hypersil GOLD SAX Hypersil SAX4Silica gel having a chemically bond	4-056	
		4-140	
		4-026	
		4-029	
		4-149	
		e (C18) chemically bonded to porous oparticles, 1.5 to 10µm in diameter, rod Acclaim 300 C18 Accucore C18 Accucore aQ Accucore aQ Accucore 150-C18 Accucore XL C18 BioBasic 18 Hypersil GOLD aQ Acclaim PepMap 100 C18 Syncronis aQ Acclaim PepMap 100 C18 Syncronis aQ Acclaim PepMap 100 C18 Syncronis Silica amically bonded to totally porous silica particles, fiameter, or a monolithic rod Accucore C8 Accu	4-075
		Syncronis aQ	4-077
L3	Porous silica particles, 1.5 to 10µm in diameter,	Accucore HILIC	4-053
	or a monolithic rod	Hypersil GOLD Silica	4-036
		Syncronis Silica	4-080
L7	Octyl silane chemically bonded to totally	Acclaim 120 C8	4-061
	or superficially porous silica particles,	Accucore C8	4-046
	1.5 to 10µm in diameter, or a monolithic rod	Accucore XL C8	4-057
		BioBasic 8	4-140
	Porous silica particles, 1.5 to 10µm in diameter, or a monolithic rod Accucore HILIC Hypersil GOLD Silica Syncronis Silica Octyl silane chemically bonded to totally or superficially porous silica particles, 1.5 to 10µm in diameter, or a monolithic rod Accucore C8 Accucore XL C8 BioBasic 8 Hypersil GOLD C8 Acclaim PepMap 100 C8 Syncronis C8 An essentially monomolecular layer of aminopropylsilane chemically bonded to totally	Hypersil GOLD C8	4-027
		s, 1.5 to 10µm in diameter, Acclaim 300 C18 Accucore C18 Accucore C18 Accucore XL C18 BioBasic 18 Hypersil GOLD Hypersil GOLD aQ Acclaim PepMap 100 C18 Syncronis C18 Syncronis C18 Syncronis C18 Syncronis C18 Syncronis Silica onded to totally ica particles, or a monolithic rod Acclaim 120 C8 Accucore XL C8 BioBasic 8 Hypersil GOLD Amino Syncronis Amino Sync	4-150
		Syncronis C8	4-076
L8	An essentially monomolecular layer of	Hypersil GOLD Amino	4-033
		Syncronis Amino	4-079
L10		Hypersil GOLD CN	<mark>4</mark> -032
L11		Accucore Phenyl-Hexyl	4-049
	particles, 1.5 to 10µm in diameter	Hypersil GOLD Phenyl	4-031
		Syncronis Phenyl	4-078
L13			Inquire
	particles, 3 to 10µm in diameter	Hypersil SAS	4-107
L14	Silica gel having a chemically bonded, strongly basic	Hypersil GOLD SAX	4-035
	quaternary ammonium anion exchange coating, 5 to 10µm in diameter		4-109
L15	Hexylsilane (C6) chemically bonded to totally porous silica particles, 3 to 10µm in diameter	BETASIL C6	Inquire

HPLC Column Selection by U.S. Pharmacopeia Specifications* continued

USP Code	Description	Recommended Phase	Page
L17	Strong cation exchange resin consisting of sulfonated	HyperREZ XP Carbohydrate H ⁺	<mark>4</mark> -156
	cross-linked styrene-divinylbenzene copolymer in the hydrogen form, 6 to 12µm in diameter	HyperREZ XP Organic Acids	<mark>4</mark> -156
L19	Strong cation exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the	HyperREZ XP Carbohydrate Ca ²⁺	4-156
	calcium form, about 9µm in diameter	HyperREZ XP Sugar Alcohols	<mark>4</mark> -156
L20	Dihydroxypropane groups chemically bonded to porous silica or hybrid particles, 1.5 to 10µm in diameter	BETASIL Diol	Inquir
L26		Accucore 150-C4	<mark>4</mark> -145
	particles, 1.5 to 10µm in diameter	BioBasic 4	4-140
		Hypersil GOLD C4	<mark>4-028</mark>
		Acclaim PepMap 300 C4	<mark>4</mark> -149
L33	Packing having the capacity to separate dextrans	BioBasic SEC 120	4-139
	by molecular size over a range of 4,000 to 500,000 daltons. It is spherical, silica-based, and processed	BioBasic SEC 300	<mark>4</mark> -139
	to provide pH stability	BioBasic SEC 1000	4-139
		MAbPac SEC-1	<mark>4</mark> -129
L34	Strong cation exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the lead form, 7 to 9μ m in diameter	HyperREZ XP Carbohydrate Pb ²⁺	4-156
L43	Pentafluorophenyl groups chemically bonded to silica	Accucore PFP	4-051
	particles by a propyl spacer, 1.5 to $10 \mu m$ in diameter	Hypersil GOLD PFP	4-030
L46	Polystyrene/divinylbenzene substrate agglomerated with quaternary amine functionalized latex beads about 9 to 11um in diameter	OmniPac PAX-100	4-103
L50	Multifunction resin with reverse-phase retention and strong anion-exchange functionalities. The resin consists of ethylvinylbenzene, 55% cross-linked with divinylbenzene copolymer, 3 to 15µm in diameter, and a surface area of not less than 350m ² per g. Substrate is coated with quaternary ammonium functionalized latex particles consisting of styrene cross-linked with divinylbenzene	OmniPac PAX-500	4-103
L52	A strong cation exchange resin made of porous silica with sulfopropyl groups 5 to 10µm in diameter	BioBasic SCX	4-141
L58	Strong cation exchange resin consisting of sulfonated cross-linked styrene-divinylbenzene copolymer in the sodium form, about 6 to 30µm in diameter	HyperREZ XP Carbohydrate Na+	4-156
L59	Packing for the size exclusion separation of proteins (separation by molecular weight) over the range of 5 to 7,000 kDa. The packing is spherical, 1.5 to 10um, silica or hybrid packing with a hydrophilic coating	BioBasic SEC 300 (5µm) MAbPac SEC-1	4-139 4-129
L60	Spherical, porous silica gel, 10µm or less in diameter,	Acclaim PolarAdvantage	4-065
	the surface of which has been covalently modified	Acclaim PolarAdvantage II	4-066
	with alkyl amide groups and endcapped	Accucore Polar Premium	4-048
L62	C30 silane bonded phase on a fully porous spherical	Acclaim C30	<mark>4</mark> -064
	silica, 3 to 15µm in diameter	Accucore C30	4-052
L78	A silane ligand that consists of both reversed-phase (an alkyl chain longer than C8) and anion-exchange (primary, secondary, tertiary or quaternary amino groups) functional groups chemically bonded to porous or non-porous or ceramic micro-particles, 1.0 to 50µm in diameter or a monolithic rod	Acclaim Mixed-Mode WAX-1	4-069

*These are the recommended Thermo Scientific HPLC columns for various USP categories although other columns for each category are also available.

Thermo Scientific HPLC Phases

The tables below list Thermo Scientific HPLC sorbents offered for small molecules separations. For Thermo Scientific phases for the separations of biomolecules see page 4-112.

Please also refer to the Advanced User Graphic (AUG) for each HPLC phase on the pages indicated.

Phase	Particle Type	Particle Size (µm)	Pore Size (Å)	Nominal Surface Area (m²/g)	% Carbon	Endcapping	USP Code	Phase Code	Page
Acclaim Phases									
120 C18	Spherical, fully porous silica	2.2, 3, 5	120	300	18	Yes	L1	-	<mark>4-061</mark>
300 C18	Spherical, fully porous silica	3	300	100	8	Yes	L1	-	<mark>4-142</mark>
120 C8	Spherical, fully porous silica	2.2, 3, 5	120	300	11	Yes	L7	-	4-062
Phenyl-1	Spherical, fully porous silica	3	120	300	13	Yes	L11	-	4-063
C30	Spherical, fully porous silica	3, 5	200	200	13	Proprietary	L62	_	4-064
PA	Spherical, fully porous silica	2.2, 3, 5	120	300	16	Yes	L60	_	4-065
PA II	Spherical, fully porous silica	2.2, 3, 5	120	300	16	Yes	L60	_	4-066
HILIC-10	Spherical, fully porous silica	3	120	300	8	Yes	-	-	4-067
Trinity P1	Nano polymer silica hybrid	3	300	100	_	Proprietary	-	_	4-091
Trinity P2	Nano polymer silica hybrid	3	300	100	_	Proprietary	-	-	4-092
Trinity Q1	Nano polymer silica hybrid	3	300	300	_	Proprietary	-	_	4-099
Mixed Mode HILIC-1	Spherical, fully porous silica	3	120	300	_	Proprietary	-	_	4-068
Mixed Mode WAX-1	Spherical, fully porous silica	3, 5	120	300	_	Proprietary	-	_	4-069
Mixed Mode WCX-1	Spherical, fully porous silica	3, 5	120	300	_	Proprietary	L78	_	4-070
Organic Acid	Spherical, fully porous silica	3, 5	120	300	_	Yes	-	_	4-093
Surfactant	Spherical, fully porous silica	3, 5	120	300	_	Yes	-	_	4-094
Surfactant Plus	Spherical, fully porous silica	3, 5	120	300	_	Yes	-	_	4-095
Explosives	Spherical, fully porous silica	3, 5	120	300	_	Yes	-	_	4-097
Carbamate	Spherical, fully porous silica	3, 5	120	300	_	Yes	-	_	4-100
Carbonyl C18	Spherical, fully porous silica	2.2	120	300	_	Yes	-	_	4-101
SEC	Spherical, resin	5, 7	300	1000	_	_	-	_	4-088
Accucore Phases									
RP-MS	Spherical, solid core silica	2.6	80	130	7	Yes	-	176	4-044
C18	Spherical, solid core silica	2.6	80	130	9	Yes	L1	171	4-045
С8	Spherical, solid core silica	2.6	80	130	5	Yes	L7	172	4-046
aQ	Spherical, solid core silica	2.6	80	130	9	Polar	L1	173	4-047
Polar Premium	Spherical, solid core silica	2.6	150	90	8	Yes	L60	280	4-048
Phenyl-Hexyl	Spherical, solid core silica	2.6	80	130	5	Yes	L11	179	4-049
Phenyl-X	Spherical, solid core silica	2.6	80	130	6	Yes	-	279	4-050
PFP	Spherical, solid core silica	2.6	80	130	5	Yes	L43	174	4-051
C30	Spherical, solid core silica	2.6	150	90	5	Yes	L62	278	4-052
HILIC	Spherical, solid core silica	2.6	80	130	_	-	L3	175	4-053
Urea-HILIC	Spherical, solid core silica	2.6	80	130	_	_	_	277	4-054
Accucore XL Phas									
C18	Spherical, solid core silica	4	80	90	7	Yes	L1	741	<mark>4</mark> -056
С8	Spherical, solid core silica	4	80	90	4	Yes	L7	742	4-057

Thermo Scientific HPLC Phases continued

Phase	Particle Type	Particle Size (µm)	Pore Size (Å)	Nominal Surface Area (m²/g)	% Carbon	Endcapping	USP Code	Phase Code	Page
Hypercarb Phas	e								
Hypercarb	Spherical, porous graphitic carbon	3, 5	250	120	100	-	-	350	<mark>4</mark> -084
Hypersil Phases	3								
ODS (C18)	Spherical, fully porous silica	3, 5	120	170	10	Yes	L1	301	<mark>4</mark> -106
ODS-2 (C18)	Spherical, fully porous silica	3, 5	80	220	11	Yes	L1	316	4-107
MOS (C8)	Spherical, fully porous silica	3, 5	120	170	6.5	No	L7	302	4-107
MOS-2 (C8)	Spherical, fully porous silica	5	120	170	6.5	Yes	L7	303	4-107
SAS (C1)	Spherical, fully porous silica	5	120	170	2.5	Yes	L13	305	4-107
Phenyl	Spherical, fully porous silica	5	120	170	5	No	L11	309	4-108
Phenyl-2	Spherical, fully porous silica	5	120	170	5	Yes	L11	319	4-108
CPS	Spherical, fully porous silica	3, 5	120	170	4	No	L10	308	4-108
CPS-2	Spherical, fully porous silica	5	120	170	4	Yes	L10	318	4-108
APS-2	Spherical, fully porous silica	3, 5	120	170	1.9	No	L8	307	4-108
Silica	Spherical, fully porous silica	3, 5	120	170	_	-	L3	300	4-109
SAX	Spherical, fully porous silica	5	120	170	2.5	Yes	L14	341	4-109
Hypersil BDS Pl	nases								
C18	Spherical, fully porous silica	2.4, 3, 5	130	170	11	Yes	L1	281	4-105
C8	Spherical, fully porous silica	2.4, 3, 5	130	170	7	Yes	L7	282	4-105
Phenyl	Spherical, fully porous silica	3, 5	130	170	5	Yes	L11	289	4-105
Cyano	Spherical, fully porous silica	3, 5	130	170	4	Yes	L10	288	4-105
Hypersil GOLD F	Phases								
C18 selectivity	Spherical, fully porous silica	1.9, 3, 5, 12	175	220	10	Yes	L1	250	<mark>4</mark> -026
C8	Spherical, fully porous silica	1.9, 3, 5	175	220	8	Yes	L7	252	4-027
C4	Spherical, fully porous silica	1.9, 3, 5	175	220	5	Yes	L26	255	4-028
aQ	Spherical, fully porous silica	1.9, 3, 5	175	220	12	Polar	L1	253	4-029
PFP	Spherical, fully porous silica	1.9, 3, 5	175	220	8	Yes	L43	254	4-030
Phenyl	Spherical, fully porous silica	1.9, 3, 5	175	220	8.5	Yes	L11	259	4-031
CN (Cyano)	Spherical, fully porous silica	1.9, 3, 5	175	220	4	Yes	L10	258	4-032
Amino	Spherical, fully porous silica	1.9, 3, 5	175	220	2	Yes	L8	257	4-033
AΧ	Spherical, fully porous silica	1.9, 3, 5	175	220	6	No	_	261	4-034
SAX	Spherical, fully porous silica	1.9, 3, 5	175	220	2.5	Yes	L14	263	4-035
Silica	Spherical, fully porous silica	1.9, 3, 5	175	220	_	_	L3	251	4-036
HILIC	Spherical, fully porous silica	1.9, 3, 5	175	220	6	No	-	265	4-037
Hypersil Green l									
РАН	Spherical, fully porous silica	3, 5	120	170	13.5	Yes	_	311	<mark>4</mark> -102
Syncronis Phase									
C18	Spherical, fully porous silica	1.7, 3, 5	100	320	16	Yes	L1	971	4-075
C8	Spherical, fully porous silica	1.7, 3, 5	100	320	10	Yes	L7	972	4-076
aQ	Spherical, fully porous silica	1.7, 3, 5	100	320	19	Polar	L1	973	4-077
Phenyl	Spherical, fully porous silica	1.7, 3, 5	100	320	11	Yes	L11	979	4-078
Amino	Spherical, fully porous silica	1.7, 3, 5	100	320	4	Yes	L8	977	4-079
Silica	Spherical, fully porous silica	1.7, 3, 5	100	320	_	_	L3	970	4-080
HILIC	Spherical, fully porous silica	1.7, 3, 5	100	320	5	_	_	975	4-081

HPLC Column Selection by Manufacturer

To find a suitable Thermo Scientific alternative to another manufacturer's columns, refer to the selection guide below. The Thermo Scientific alternative phases are selected based on a combination of physical and chemical similarities as well as mode of retention. These alternatives are not guaranteed to provide the same retention or selectivity, but should be suitably similar in character to allow a similar or improved separation to be achieved with some method optimization. The user should refer to the individual phase information to ensure that the characteristics of the alternative match the requirements of their separation. The following table is not complete in terms of manufacturer or products offered. Although every effort is made to ensure that the product information provided is as accurate as possible, some errors may occur in collation and transcription. We cannot accept any responsibility for the use of the following information.

Phase	Manufacturer	Pore Size (Å)	Area (m²/g)	% Carbon	Recommended Thermo Scientific Alternative	Page
ACE C18	ACT	100	300	15.5	Syncronis C18	<mark>4</mark> -075
ACE C8	ACT	100	300	9	Syncronis C8	4-076
ACE Phenyl	ACT	100	300	9.5	Syncronis Phenyl	4-078
ACE AQ	ACT	100	300	14	Syncronis aQ	4-077
ACE C18-300	ACT	300	100	9	BioBasic 18	4-140
ACE C8-300	ACT	300	100	5	BioBasic 8	4-140
ACE C4-300	ACT	300	100	2.6	BioBasic 4	4-140
ACQUITY UPLC [™] BEH HILIC	Waters	130	185	-	Hypersil GOLD Silica (1.9µm)	4-03
ACQUITY UPLC HSS C18	Waters	100	230	15	Hypersil GOLD (1.9µm)	4-020
ACQUITY UPLC BEH C18	Waters	130	185	18	Hypersil GOLD (1.9µm)	4-020
ACQUITY UPLC BEH C8	Waters	130	185	13	Hypersil GOLD C8 (1.9µm)	4-02
ACQUITY UPLC BEH Phenyl	Waters	130	185	15	Hypersil GOLD Phenyl (1.9µm)	4-031
ACQUITY UPLC HSS T3	Waters	100	230	11	Hypersil GOLD aQ (1.9µm)	4-029
Aeris PEPTIDE XB-C18	Phenomenex	100	200	-	Accucore 150-C18	4-144
Aeris WIDEPORE XB-C18	Phenomenex	200	25	_	Accucore 150-C18	4-144
Aeris WIDEPORE XB-C8	Phenomenex	200	25	_	Accuccore 150-C4	4-145
Aeris WIDEPORE XB-C4	Phenomenex	200	25	_	Accuccore 150-C4	4-145
Alltima™ HP C18	Grace	190	200	12	Hypersil GOLD	4-02
Alltima HP C18 AQ	Grace	100	450	20	Hypersil GOLD aQ	4-02
Alltima HP C18 HiLoad	Grace	100	450	24	Syncronis C18	4-07
Alltima HP C8	Grace	190	200	8	Hypersil GOLD C8	4-02
Alltima HP CN	Grace	190	200	4	Hypersil GOLD CN	4-032
Alltima HP Silica	Grace	190	200	_	Hypersil GOLD Silica	4-03
Aminex [™] HPX42C	Bio-Rad	-	_	_	HyperREZ XP Carbohydrate Ca ²⁺	4-156
Aminex HPX72S	Bio-Rad	_	_	_	HyperREZ XP Carbohydrate H*	4-156
Aminex HPX87C	Bio-Rad	_	_	-	HyperREZ XP Carbohydrate Ca ²⁺	4-156
Aminex HPX87H	Bio-Rad	_	_	_	HyperREZ XP Carbohydrate H ⁺	4-156
Aminex HPX87N	Bio-Rad	_	_	-	HyperREZ XP Carbohydrate Na ⁺	4-156
Aminex HPX87P	Bio-Rad	_	_	-	HyperREZ XP Carbohydrate Pb ²⁺	4-156
AQUA™ C18	Phenomenex	125	320	15	Hypersil GOLD aQ	4-02
Ascentis™ C18	Supelco	100	450	25	Syncronis C18	4-07
Ascentis C8	Supelco	100	450	15	Syncronis C8	4-07
Ascentis Express C18	Supelco	90	150	-	Accucore C18	4-04
Ascentis Express C8	Supelco	90	150	-	Accucore C8	4-04
Ascentis Express F5	Supelco	90	150	_	Accucore PFP	4-05
Ascentis Express HILIC	Supelco	90	150	_	Accucore HILIC	4-05
Ascentis Express Phenyl-Hexyl	Supelco	90	150	-	Accucore Phenyl-Hexyl	4-049
Ascentis Express RP-Amide	Supelco	90	150	-	Accucore Polar Premium	4-04
Ascentis Express Peptide ES-C18	Supelco	160	80	_	Accucore 150-C18	4-14
Ascentis Phenyl	Supelco	100	450	19	Syncronis Phenyl	4-07

HPLC Column Selection by Manufacturer continued

Phase	Manufacturer	Pore Size (Å)	Area (m²/g)	% Carbon	Recommended Thermo Scientific Alternative	Page
Atlantis™ dC18	Waters	100	330	12	Acclaim Polar Advantage II	4-066
Atlantis T3	Waters	100	300	14	Hypersil GOLD	4-026
Atlantis HILIC Silica	Waters	100	300	-	Hypersil GOLD Silica	4-036
Atlantis dC18	Waters	100	330	12	Hypersil GOLD aQ	4-029
Capcell Core C18	Shiseido	90	150	7	Accucore C18	4-045
Capcell Pak C18 AQ	Shiseido	120	300	11	Acclaim Polar Advantage II	4-066
Cortecs C18	Waters	90	100	6.6	Accucore C18	4-045
Cortecs C18+	Waters	90	100	5.7	Accucore Polar Premium	4-048
Cortecs HILIC	Waters	90	100	_	Accucore HILIC	4-053
Discovery [™] BIO Wide Pore C18	Supelco	300	_	_	BioBasic 18	4 -140
Discovery BIO Wide Pore C8	Supelco	300	_	_	BioBasic 8	4-140
Discovery C18	Supelco	180	200	14	Hypersil GOLD	4-026
Discovery C8	Supelco	180	200	_	Hypersil GOLD C8	4-027
Discovery Cyano	Supelco	180	200	_	Hypersil GOLD CN	4-032
Gemini [™] C18	Phenomenex	110	375	14	Hypersil GOLD	4-026
Halo C18	AMT	90	150	_	Accucore C18	4-045
Halo C8	AMT	90	150	_	Accucore C8	4-046
Halo HILIC	AMT	90	150	_	Accucore HILIC	4-053
Halo PFP	AMT	90	150		Accucore PFP	4-051
Halo Phenyl-Hexyl	AMT	90	150	-	Accucore Phenyl-Hexyl	4-049
Halo RP-Amide	AMT	90	150	-	Accucore Polar Premium	4-045
HALO Peptide ES-C18	AMT	160	80	-	Accucore 150-C18	4-144
Inertsil [™] C4	GL Sciences	150	320	8	Hypersil GOLD C4	4-144
	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	•••••	/./.	•••••
Inertsil C8	GL Sciences	150	320	11	Syncronis C8	4-076
Inertsil ODS3V	GL Sciences GL Sciences	100	450	15	Syncronis C18	4-075
Inertsil Phenyl		150	320	10	Syncronis Phenyl	4-078
Inertsil Silica	GL Sciences	150	320	- 14	Syncronis Silica	4-080
J'Sphere M80	YMC	80	-	14	Acclaim PolarAdvantage II	4-066
Jupiter [™] C18	Phenomenex	300	170	13	BioBasic 18	4-140
Jupiter C4	Phenomenex	300	170	5	BioBasic C4	4-140
Kinetex C18	Phenomenex	100	_	12	Accucore C18	4-045
Kinetex C8	Phenomenex	100	_	10	Accucore C8	4-046
Kinetex HILIC	Phenomenex	100	_	_	Accucore HILIC	4-053
Kinetex PFP	Phenomenex	100	_	9	Accucore PFP	4-051
Kinetex Phenyl-Hexyl	Phenomenex	100	_	_	Accucore Phenyl-Hexyl	4-049
Kinetex XB-C18	Phenomenex	100	_	12	Accucore C18	4-045
Kromasil C18	Akzo-Nobel	100	340	19	Syncronis C18	4 -075
Kromasil C4	Akzo-Nobel	100	340	8	Hypersil GOLD C4	4-028
Kromasil Silica	Akzo-Nobel	100	340	-	Syncronis Silica	<mark>4-080</mark>
LiChrospher [™] CN	Merck	100	350	7	Hypersil GOLD CN	4-032
LiChrospher Diol	Merck	100	350	-	BETASIL Diol	Inquire
LiChrospher NH ₂	Merck	100	350	5	Syncronis Amino	4-079
LiChrospher RP 18	Merck	100	350	21	Syncronis C18	4-075
LiChrospher RP-18e	Merck	100	350	22	Syncronis C18	4 -075
LiChrospher RP-8	Merck	100	350	13	Syncronis C8	4-076
LiChrospher RP-8e	Merck	100	350	13	Syncronis C8	4-076
Luna [™] C18 (2)	Phenomenex	100	400	18	Syncronis C18	4-075
Luna C8 (2)	Phenomenex	100	400	14	Syncronis C8	4-076
Luna CN	Phenomenex	100	400	_	Hypersil GOLD CN	4-032
Luna HILIC	Phenomenex	200	200	5.7	BETASIL Diol	Inquire
Luna NH2	Phenomenex	100	400	10	Syncronis Amino	4-079
Luna PFP (2)	Phenomenex	100	400	5.7	Hypersil GOLD PFP	4-030

Phase	Manufacturer	Pore Size (Å)	Area (m²/g)	% Carbon	Recommended Thermo Scientific Alternative	Page
Luna SCX	Phenomenex	100	400		BioBasic SCX	4-141
Luna Silica (2)	Phenomenex	100	400	-	Syncronis Silica	4-080
µBondapak™ C18	Waters	125	330	10	Hypersil GOLD	4-026
µBondapak CN	Waters	125	330	-	Hypersil GOLD CN	4-032
µBondapak NH2	Waters	125	330	4	Hypersil APS-2	4-108
µBondapak Phenyl	Waters	125	330	-	Hypersil GOLD Phenyl	<mark>4</mark> -031
Nova-Pak™ (HR) C18	Waters	60	120	7	Hypersil GOLD	4-026
Nova-Pak C8	Waters	60	120	_	Hypersil GOLD C8	4-027
Nova-Pak CN	Waters	60	120	_	Hypersil GOLD CN	4-032
Nova-Pak Phenyl	Waters	60	120	5	Hypersil GOLD Phenyl	4-031
Nova-Pak Silica	Waters	60	120	_	Hypersil GOLD Silica	4-036
NUCLEODUR™ C18 EC	Macherey-Nagel	_ 110	340	18	Syncronis C18	4-075
NUCLEODUR C18 Gravity	Macherey-Nagel	110	340	18	Syncronis C18	4-075
NUCLEODUR CN	Macherey-Nagel	110	340	7	Hypersil GOLD CN	4-032
NUCLEODUR Pyramid	Macherey-Nagel	110	340	14	Syncronis aQ	4-077
Nucleoshell [™] RP 18	Macherey-Nagel	90	130	7.5	Accucore C18	4-045
Nucleoshell Phenyl-Hexyl	Macherey-Nagel	90	130	4.5	Accucore Phenyl-Hexyl	<mark>4</mark> -049
Nucleoshell PFP	Macherey-Nagel	90	130	3	Accucore PFP	4 -051
Nucleosil [™] 100 C18	Macherey-Nagel	100	350	17	Syncronis C18	4-075
Nucleosil 100 C18 AB	Macherey-Nagel	100	350	24	Syncronis C18	4-075
Nucleosil 100 C ₆ H ₅	Macherey-Nagel	100	350	_	Syncronis Phenyl	4-078
Nucleosil 100 C8	Macherey-Nagel	100	350	9	Syncronis C8	4-076
Nucleosil 100 CN	Macherey-Nagel	100	350	_	Hypersil GOLD CN	4-032
Nucleosil 100 N(CH ₃) ₂	Macherey-Nagel	100	350	_	Hypersil SAX	4-109
Nucleosil 100 NH ₂	Macherey-Nagel	100	350	4	Syncronis Amino	4-079
Nucleosil 100 OH	Macherey-Nagel	100	350	_	BETASIL Diol	Inquire
Nucleosil 100 SA	Macherey-Nagel	100	350	7	BioBasic SCX	4-141
Nucleosil 100 SA	Macherey-Nagel	100	350	10		4-141
	· •···································		•••••	• ••••••••	Hypersil GOLD SAX BioBasic 18	4-035
Nucleosil 300 C18	Macherey-Nagel	300	100	7		
Nucleosil 300 C4	Macherey-Nagel	300	100	-	BioBasic 4	4-140
Nucleosil 300 C ₆ H ₅	Macherey-Nagel	300	100	_	BioBasic Phenyl	Inquire
Nucleosil 300 C8	Macherey-Nagel	300	100	-	BioBasic 8	4-140
Nucleosil 300 CN	Macherey-Nagel	300	100	-	BioBasic CN	Inquire
Pinnacle [™] C1	Restek	120	170	2	Hypersil SAS	4-107
Pinnacle C18	Restek	120	170	10	Hypersil GOLD	4-026
Pinnacle C4	Restek	120	170	4	Hypersil GOLD C4	4-028
Pinnacle CN	Restek	120	170	5	Hypersil GOLD CN	4-032
Pinnacle DB C18	Restek	140	-	11	Hypersil GOLD	4-026
Pinnacle DB C18 1.9µm	Restek	140	-	11	Hypersil GOLD (1.9µm)	4-026
Pinnacle DB C8	Restek	140	_	6	Hypersil GOLD C8	4-027
Pinnacle DB Cyano	Restek	140	-	4	Hypersil GOLD CN	4-032
Pinnacle DB Phenyl	Restek	140	-	5	Hypersil GOLD Phenyl	<mark>4</mark> -031
Pinnacle IBD	Restek	120	170	-	Hypersil GOLD	4-026
Pinnacle NH_2	Restek	120	170	2	Hypersil GOLD Amino	4-033
Pinnacle Phenyl	Restek	120	170	5	Hypersil GOLD Phenyl	4-031
Pinnacle SAX	Restek	120	170	3	Hypersil GOLD SAX	4-035
Pinnacle Silica	Restek	120	170	_	Hypersil GOLD SAX	4-035
•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	170	20		••••••
Pinnacle Ultra C18	Restek	100	_	20	Syncronis C18	4-075
Pinnacle Wide Pore C4	Restek	300	120	2	BioBasic 4	4-140
Poroshell [™] 120 EC-C18	Agilent	120	120		Accucore C18	4-045
Poroshell 120 EC-C8	Agilent	120	120	5	Accucore C8	4-046
Poroshell 120 SB-C18	Agilent	120	120	7.5	Accucore C18	4-045
Poroshell 120 SB-Aq	Agilent	120	130	_	Accucore aQ	<mark>4</mark> -047

HPLC Column Selection by Manufacturer continued

Phase	Manufacturer	Pore Size (Å)	Area (m²/g)	% Carbon	Recommended Thermo Scientific Alternative	Page
Poroshell 120 Phenyl-Hexyl	Agilent	120	130	9	Accucore Phenyl-Hexyl	4-049
Poroshell 120 Bonus-RP	Agilent	120	130	9.5	Accucore Polar Premium	4-048
Poroshell SB-C18	Agilent	300	45	2.8	Accucore 150-C18	4-144
Poroshell Extend-C18	Agilent	300	45		Accucore 150-C18	4-144
Poroshell 300 SB-C8	Agilent	300	45	1.5	Accucore 150-C4	4-145
Poroshell 300 SB-C3	Agilent	300	45	1.1	Accucore 150-C4	4-145
Primesep™	SieLC	-	_	-	Acclaim Mixed-Mode Columns	4-068
Prodigy [™] C8	Phenomenex	150	310	13	Syncronis C8	4-076
Prodigy ODS2	Phenomenex	150	310	18	Syncronis C18	4-075
Prodigy ODS-3	Phenomenex	100	450	16	Syncronis C18	4-075
Prodigy ODS-3V	Phenomenex	100	450	16	Hypersil GOLD	<mark>4-02</mark> 6
Prodigy Phenyl-3	Phenomenex	100	450	10	Syncronis Phenyl	4-078
Purospher [™] RP-18	Merck	60	500	-	Hypersil GOLD	4-026
Purospher STAR-8e	Merck	120	300	_	Hypersil GOLD C8	4-027
Purospher STAR RP-18e	Merck	120	300	_	Hypersil GOLD	4-026
Waters [™] Spherisorb [™] C1	Waters	80	200	2	Hypersil SAS	4-107
Waters Spherisorb C6	Waters	80	200	5	BETASIL C6	Inquire
Waters Spherisorb C8	Waters	80	200	6	Hypersil GOLD C8	4-027
Waters Spherisorb CN	Waters	80	200	3	Hypersil GOLD CN	4-032
Waters Spherisorb NH ₂	Waters	80	200	2	Hypersil APS-2	4-108
Waters Spherisorb ODS1	Waters	80	200	6	Hypersil GOLD	4-026
Waters Spherisorb ODS1	Waters	80	200	12	•••••••••••••••••••••••••••••••••••••••	4-020
	•••••••••••••••••••••••••••••••••••••••			• •••••••••••••••••••••••••••••••••••••	Hypersil GOLD	••••••
Waters Spherisorb ODSB	Waters	80	200	12	Hypersil GOLD	4-026
Waters Spherisorb Phenyl	Waters	80	200	3	Hypersil GOLD Phenyl	4-031
Waters Spherisorb SAX	Waters	80	200	_	Hypersil SAX	4-109
Waters Spherisorb SCX	Waters	80	200	-	BioBasic SCX	4-141
Waters Spherisorb W (silica)	Waters	80	200	-	Hypersil GOLD Silica	4-036
SunFire [™] C18	Waters	90	340	16	Syncronis C18	4-075
SunFire C8	Waters	90	340	16	Syncronis C8	4-076
SunShell [™] C18	ChromaNik	90	150	7	Accucore C18	4-045
SunShell C8	ChromaNik	90	150	4.5	Accucore C8	4-046
SunShell PFP	ChromaNik	90	150	4.5	Accucore PFP	4-051
Supelcosil™ LC-1	Supelco	120	170	-	Hypersil SAS	<mark>4</mark> -107
Supelcosil LC-18	Supelco	120	170	11	Hypersil GOLD	<mark>4</mark> -026
Supelcosil LC-18DB	Supelco	120	170	11	Hypersil GOLD	4-026
Supelcosil LC-8	Supelco	120	170	-	Hypersil GOLD C8	4-027
Supelcosil LC-CN	Supelco	120	170	_	Hypersil GOLD CN	4-032
Supelcosil LC-NH ₂	Supelco	120	170	_	Hypersil GOLD Amino	4-033
Supelcosil LC-Si	Supelco	120	170	_	Hypersil GOLD Silica	4-036
Symmetry [™] C18	Waters	100	335	19	Syncronis C18	4-075
Symmetry C8	Waters	100	335	12	Syncronis C8	4-076
Synergi™ Hydro-RP	Phenomenex	80	475	19	Syncronis aQ	4-077
TSKgel [™] G2000SW (incl XL)	Tosoh	125	_	_	BioBasic SEC 120	4-139
TSKgel Octyl-80TS	Tosoh	80	200	11	Hypersil GOLD C8	4-027
TSKgel ODS-120A	•••••••••••••••••••••••••••••••••••••••	120	200		Hypersil GOLD	4-027
	Tosoh	••••	•••••	22	•••••••••••••••••••••••••••••••••••••••	••••••
TSKgel ODS-120T	Tosoh	120	200	22	Syncronis C18	4-075
TSKgel ODS-80TM	Tosoh	80	200	15	Hypersil GOLD	4-026
TSKgel Super Octyl	Tosoh	110	_	5	Hypersil GOLD C8	4-027
TSKgel Super ODS	Tosoh	110	-	8	Hypersil GOLD	4-026
TSKgel Super Phenyl	Tosoh	110		3	Hypersil GOLD Phenyl	4-031
TSKgel SuperSW3000	Tosoh	250	-	-	BioBasic SEC 300	<mark>4</mark> -139

	C
16	C
je 26	O
26 26	\Box
	В
40 40 40 40 40 40	suunic
40	01
10	H H
40	and ,
40	
40	Acc
40	\mathcal{O}
26	essories
27	S S
26	\underline{O}
30	
31	
26	
27	\vee
26 27 36 31 26 27 27 09 62 32 uire 33 77	\sim
09	
62	ò
32	m
iire	Ξ
an c 33	S
33	ē
77	Ct.
76	0

Phase	Manufacturer	Pore Size (Å)	Area (m²/g)	% Carbon	Recommended Thermo Scientific Alternative	Page
Vydac™ 201SP C18	Grace	90	_	-	Hypersil GOLD	<mark>4-026</mark>
Vydac 201SP Selectapore 90M C18	Grace	90	250	-	Hypersil GOLD	4-026
Vydac 201TP C18	Grace	300	_	-	BioBasic 18	<mark>4</mark> -140
Vydac 202TP C18	Grace	300	_	-	BioBasic 18	<mark>4</mark> -140
Vydac 208TP C8	Grace	300	-	-	BioBasic 8	<mark>4</mark> -140
Vydac 214TP	Grace	300	-	-	BioBasic 4	<mark>4</mark> -140
Vydac 218TP	Grace	300	-	_	BioBasic 18	<mark>4</mark> -140
Vydac 218WP Selectapore 300M C18	Grace	300	70	-	BioBasic 18	<mark>4</mark> -140
XBridge™ C18	Waters	-	-	-	Hypersil GOLD	<mark>4</mark> -026
XBridge C8	Waters	-	-	-	Hypersil GOLD C8	4-027
XBridge HILIC	Waters	130	185	_	Hypersil GOLD Silica	4-036
XBridge Phenyl	Waters	_	_	_	Hypersil GOLD Phenyl	4-031
XTerra [™] MS C18	Waters	125	180	16	Hypersil GOLD	4-026
XTerra MS C8	Waters	125	180	12	Hypersil GOLD C8	4-027
YMCbasic™	YMC	_	_	-	Hypersil GOLD C8	4-027
YMC-Pack [™] C4	YMC	120	300	7	Hypurity C4	4-109
YMC-Pack C8	YMC	120	300	10	Acclaim C8	4-062
YMC-Pack CN	YMC	120	300	7	Hypersil GOLD CN	4-032
YMC-Pack Diol	YMC	120	300	_	BETASIL Diol	Inquire
YMC-Pack NH ₂	YMC	120	_	_	Hypersil GOLD Amino	4-033
YMC-Pack ODS AQ	YMC	120	300	16	Syncronis aQ	4-077
YMC-Pack ODS-A	YMC	120	300	17	Syncronis C18	4-075
YMC-Pack ODS-A	YMC	300	150	6	BioBasic 18	4-140
YMC-Pack Phenyl	YMC	120	300	9	Syncronis Phenyl	4-078
YMC-Pack Pro C18	YMC	120	350	16	Syncronis C18	4-075
YMC-Pack Silica	YMC	120	_	_	Syncronis Silica	4-080
YMC-Pack TMS (C1)	YMC	120	300	4	BETASIL C1	Inquire
Zorbax [™] Eclipse XDB C18	Agilent	80	180	10	Hypersil GOLD	4-026
Zorbax Eclipse XDB C8	Agilent	80	180	8	Hypersil GOLD C8	4-027
Zorbax Eclipse XDB Phenyl	Agilent	80	180	8	Hypersil GOLD Phenyl	4-031
Zorbax Eclipse Plus C18	Agilent	95	160	8	Hypersil GOLD	4-026
Zorbax Eclipse Plus C8	Agilent	95	160	6	Hypersil GOLD C8	4-027
Zorbax RRHT Eclipse Plus C18		95	160	8	Hypersil GOLD (1.9µm)	4-026
Zorbax RRHT Eclipse Plus C8		95	160	6	Hypersil GOLD C8 (1.9µm)	4-027
Zorbax RRHT Eclipse XDB-C18	Agilent	80	180	10	Hypersil GOLD (1.9µm)	4-026
Zorbax RRHT Eclipse XDB-C8	Agilent	80	180	7.5	Hypersil GOLD C8 (1.9µm)	4-027
Zorbax RRHT SB-CN	Agilent	80	180	4	Hypersil GOLD CN (1.9µm)	4-032
Zorbax SB Aq	Agilent	80	180	_	Hypersil GOLD aQ	4-029
Zorbax SB C18	Agilent	80	180	10	Hypersil GOLD	4-026
Zorbax SB C18	Agilent	300	45	3	BioBasic 18	4-140
Zorbax SB C8	Agilent	80	180	6	Hypersil GOLD C8	4-027
Zorbax SB C8	Agilent	300	45	2	BioBasic 8	4-140
Zorbax SB CN	Agilent	80	180	4	Hypersil GOLD CN	4-032
Zorbax SB Phenyl	Agilent	80	180	6	Hypersil GOLD Phenyl	4-031

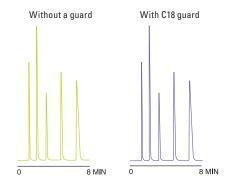
Thermo Scientific LC Columns

Column Protection

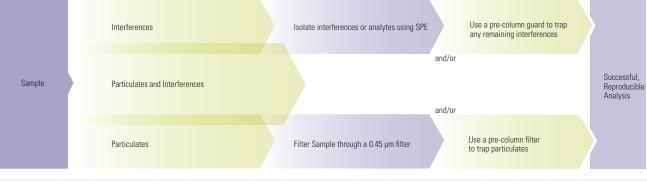
Extend column lifetime and improve performance

- · Guards and filters to protect your analytical column
- Economical extension of column lifetime
- Multiple formats for optimum performance and efficiency
- Drop-in designs for quick and easy guard and filter replacement
- UHPLC Filter cartridges and holder to protect Hypersil GOLD 1.9µm columns

To extend the lifetime and performance of your analytical and preparative columns, we recommend that they be protected from contamination by sample and solvent debris and interferences from the sample matrix. The most cost-effective and efficient way of trapping these unwanted system components is by use of a filter or packed guards. Column performance should not be affected by adding a guard or filter unit to the HPLC system. The chromatogram shown demonstrates how the column's chromatographic performance is unaffected by the addition of a guard unit during the analysis of procainamides.


Guard and Filter Selection

Guard columns are positioned between the injector and the analytical column, removing strongly adsorbed sample components before the sample reaches the analytical column. The simple rule of thumb in guard selection is to choose one that matches your analytical column. The internal diameters should match as closely as possible, and the packing material should be the same particle size and chemistry as the analytical column. If a guard cartridge system is used, the replacement of the packed cartridges should be simple and fast.


Pre-column filters are positioned between the solvent inlet filter and the column inlet. They are designed to trap particulate matter from the fluid path. They do not remove sample interferences or contaminants that are dissolved in the fluid path. These units are designed to be wholly disposable or have replaceable filters in a re-useable holder.

Replaceable 0.2µm Thermo Scientific UHLPC filter cartridges protect Hypersil GOLD 1.9µm and Syncronis 1.7µm columns against particles, enhancing column lifetime. Its low dead volume design maintains chromatographic performance without degrading peak shape and causes minimal efficiency loss through dispersion. The UHPLC filter adds a minimal increase in backpressure, so can be fitted to any length column.

Peak resolution and shape are unaffected by the addition of a guard column

Choosing a guard or filter based on sample make-up

Drop-in Guard Cartridges

Drop-in guard cartridges offer convenience, economy and effective protection for extending column lifetime

- The 10mm design offers maximum protection with minimal increase in retention
- Fit Thermo Scientific[™] UNIGUARD[™] direct connection and stand alone holders

R	R	R	R
U	U.	U.	U

Drop-in Guard	l Cartridges Ord	ering Guide				
Particle Size (µm)	Length (mm)	1.0mm ID	2.1mm ID	3.0mm ID	4.0/4.6mm ID	Quantity
Hypersil GOLD						
3	10	25003-011001	25003-012101	25003-013001	25003-014001	4 Pack
5	10	25005-011001	25005-012101	25005-013001	25005-014001	4 Pack
Hypersil GOLD (8					
3	10	25203-011001	25203-012101	25203-013001	25203-014001	4 Pack
5	10	25205-011001	25205-012101	25205-013001	25205-014001	4 Pack
Hypersil GOLD a	aQ					
3	10	25303-011001	25303-012101	25303-013001	25303-014001	4 Pack
5	10	25305-011001	25305-012101	25305-013001	25305-014001	4 Pack
Hypersil GOLD I	PFP					
3	10	25403-011001	25403-012101	25403-013001	25403-014001	4 Pack
5	10	25405-011001	25405-012101	25405-013001	25405-014001	4 Pack
Hypersil GOLD (CN					
3	10	25803-011001	25803-012101	25803-013001	25803-014001	4 Pack
5	10	25805-011001	25805-012101	25805-013001	25805-014001	4 Pack
Hypersil GOLD I	Phenyl					
3	10	25903-011001	25903-012101	25903-013001	25903-014001	4 Pack
5	10	25905-011001	25905-012101	25905-013001	25905-014001	4 Pack
Accucore XL C1	8					
4	10	_	74104-012101	74104-013001	74104-014001	4 Pack
Accucore XL C8						
4	10	_	74204-012101	74204-013001	74204-014001	4 Pack
Syncronis C18						
5	10	-	97105-012101	97105-013001	97105-014001	4 Pack
Syncronis C8						
5	10	_	97205-012101	97205-013001	97205-014001	4 Pack
Syncronis aQ						
5	10	_	97305-012101	97305-013001	97305-014001	4 Pack
Syncronis Phen	yl					
5	10	_	97905-012101	97905-013001	97905-014001	4 Pack
Hypercarb						
3	10	35003-011001	35003-012101	35003-013001	35003-014001	2 Pack
5	10	35005-011001	35005-012101	35005-013001	35005-014001	2 Pack

This table provides a sample of the guard cartridges for the most popular Thermo Scientific HPLC stationary phases. Drop-in guard cartridges are available in other Thermo Scientific phases. For information on guard cartridges for other Thermo Scientific phases, please consult the appropriate section of the catalogue or contact Customer Services for more information.

Defender Guard Cartridges

Thermo Scientific[™] Defender[™] Guard Cartridges have been designed specifically to work with high speed, high efficiency separations.

Particle Length Particle Length 2.1mm ID 2.1mm ID Description Description Size (µm) (mm) Size (µm) (mm) Accucore RP-MS 17626-012105 Accucore PFP 17426-012105 2.6 10 2.6 10 2.6 10 17126-012105 Accucore C30 2.6 10 27826-012105 Accucore C18 17226-012105 Accucore C8 2.6 10 Accucore HILIC 2.6 10 17526-012105 Accucore aQ 2.6 10 Accucore Urea-HILIC 2.6 10 17326-012105 27726-012105 Accucore Polar Premium 2.6 10 28026-012105 Accucore 150-C18 2.6 10 16126-012105 Accucore Phenyl-Hexyl 2.6 10 17926-012105 Accucore 150-C4 2.6 10 16526-012105 10 Accucore Phenyl-X 2.6 10 27926-012105 Accucore 150-Amide-HILIC 2.6 16726-012105

Accucore Defender Guard Cartridges (4/pk) Ordering Guide

Other guard column dimension are available in some Accucore phases. Please call your local Customer Service for more information.

UNIGUARD Direct-Connection Guard Cartridge Holders

Reusable, stainless steel guard cartridge holders that match directly to the analytical column inlet – eliminating requirement for extra fittings

- With PEEK 1/16in male outlet that fits most columns
- 1/16in female inlet can be used with various standard fittings

UNIGUARD Direct-Connection Guard Cartridge Holders Ordering Guide

Description	1.0mm ID	2.1mm ID	3.0mm ID	4.0/4.6mm ID	Quantity
UNIGUARD Drop-In /Defender Guard Cartridge Holder	851-00	852-00	852-00	850-00	1 Each
Standard Replacement Tip	850-RT	850-RT	850-RT	850-RT	1 Each
Waters Columns Replacement Tip	850-WT	850-WT	850-WT	850-WT	1 Each

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Acclaim Guards Cartridges

Thermo Scientific[™] Acclaim[™] Guard Cartridges are available in the same packing and internal diameters as the Acclaim analytical column chemistries. A re-usable holder allows for easy cartridge replacement; extending the life of the analytical column.

Acclaim Guard Cartridges Ordering Guide

Acclaim Guard Cartridge Ordering Guide (2/pk)

Particle Size (µm)	Length (mm)	ID (mm)	120 C18	120 C8	Polar Advantage	Polar Advantage II	C30	Mixed-Mode HILIC-1	Mixed-Mode WAX-1	Mixed-Mode WCX-1
5	10	2.1	069689	069688	069691	069692	075722	069694	069686	085455
		3.0	071981	071979	071983	071985	075721	071913	071909	071911
		4.6	069695	069696	069698	069699	075720	069706	069704	069705

Acclaim Guard Cartridge Ordering Guide (2/pk) continued

Description	Particle Size (µm)	Length (mm)	2.1mm ID	3.0mm ID	4.6mm ID
Phenyl-1	3	10	079934	071974	071973
HILIC-10	5	10	074263	074261	074262

Acclaim Specialty Column Guard Cartridge Ordering Guide (2/pk)

Description	Particle Size (µm)	Length (mm)	2.1mm ID	3.0mm ID	4.6mm ID
Acclaim Trinity P1	3	10	071391	071390	-
Acclaim Trinity P2	3	10	085435	085436	-
Acclaim Trinity Q1	5	10	079719	079720	-
Acclaim Organic Acid	5	10	-	071987	069700
Acclaim Surfactant Plus	5	10	082773	078959	078960
Acclaim Surfactant	5	10	069693	071991	069701
Acclaim Explosives E1	5	10	_	_	069702
Acclaim Explosives E2	5	10	_	071989	069703
Acclaim Carbamate	5	10	072930	072929	072928
Acclaim Carbonyl C18	5	10	079012	079013	079014

Acclaim Guard Holder Ordering Guide

Format	Cat. No.
Acclaim Guard Cartridge Holder V-2	069580
Acclaim Guard Kit (Holder and coupler) V-2	069707
Guard to Analytical Column Coupler V-2	074188

Javelin Direct-Connection Column Filters

One-piece filter protects HPLC systems

- Direct-connection design for maximum efficiency
- Replace entire disposable filter unit for easy changes
- Recommended for use as dedicated filters for a column rather than the HPLC system
- 1/16in CPI tip attaches directly to HPLC column inlet without tubing or wrenches
- 0.5µm porosity

Javelin Direct-Connection Column Filter Ordering Guide

Description	2.1mm ID	3.0mm ID	4.0/4.6mm ID	Quantity	
Javelin Column Filter	88200	88700	88400	4 Pack	

ColumnSaver Precolumn Filters

Filter mesh size 2µm

ColumnSaver Precolumn Filters Ordering Guide

Filter Mesh Size (µm)	Cat. No	Quantity
2	60140-412	10 Pack

UNIFILTER Direct-Connection HPLC Filter Systems

Quickly replaced for minimal down time

- Replaceable 0.5µm drop-in filter enhances column lifetime and improved performance
- Holder attached directly to the inlet of your analytical system for maximum convenience

UNIFILTER Direct-Connection HPLC Filter Systems Ordering Guide

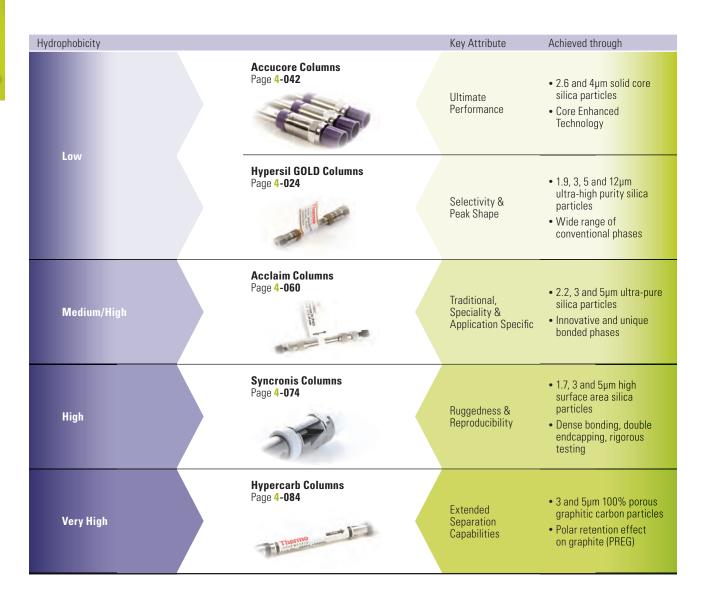
		•		
Description	2.1/3.0mm ID	4.0/4.6mm ID	Quantity	
UNIFILTER Direct Connection Holder	27002	27000	1 Each	
Replacement Filter, 0.5µm	22016	22150	1 Each	
Replacement Filter, 0.5µm	22017	22155	5 Pack	
Replacement Tip, CPI, Standard	850-RT	850-RT	1 Each	
Replacement Tip, Waters End-fitting	850-WT	850-WT	1 Each	
UHPLC Filter Column protection for Hypersil GC without compromising performance	, ,	ncronis 1.7µm colu	umns	The second
 Low volume filter cartridge design Maintain peak shape			and the second sec	e and the second s
Minimal efficiency loss through dis	persion			
UHPLC Filter Ordering Guide				

UHPLC Filter

- Low volume filter cartridge design
- Maintain peak shape
- · Minimal efficiency loss through dispersion

UHPLC Filter Ordering Guide

Description	Cat. No.	Quantity
UHPLC Direct Connect Filter Holder	27006	1 Each
2.1mm ID Replacement Filter Cartridge, 0.2µm	22180	5 Pack
1.0mm ID Replacement Filter Cartridge, 0.2µm	22185	5 Pack



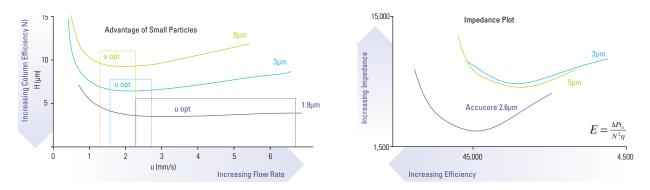
Notes	_
	Columns and Accessories
	nns
	and
	d Ac
	Seo(
	SOL
	ies
	$\stackrel{\scriptstyle{\scriptstyle \sim}}{\scriptstyle{\scriptstyle \sim}}$
	Colu
	mn Pr
	Column Protection
	On
	V
	1

Thermo Scientific Columns for Fast and Analytical HPLC

The Thermo Scientific LC column portfolio offers a comprehensive range of high quality options for fast and analytical HPLC.

The table below shows our major column families with details of relative hydrophobicity, key attributes and how the attributes are achieved. Use this table and the information in the subsequent catalogue pages to find the best Thermo Scientific LC columns for your separation needs.

Principles of Fast LC


Effect of particle size and type

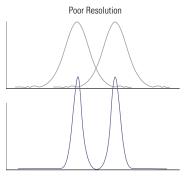
It is now well established that columns packed with smaller diameter particles generate higher efficiencies over a wider range of flow rates than larger particle columns – as shown in the plot below. An alternative to small diameter particles is the Core Enhanced Technology used in Accucore HPLC columns. As shown in the impedance plot below, Accucore columns generate higher efficiencies in shorter times than columns packed with 5µm or 3µm particles and does so at low backpressures.

E Impedance

- ΔP Backpressure
- t_n Retention time of unretained peak
- N Efficiency
- η Mobile phase viscosity

Speed and Resolution

The general chromatographic resolution equation shows that resolution is directly proportional to efficiency. High efficiencies across a wider range of linear velocities mean that shorter columns and/or faster flow rates can be used to increase the speed of separations without sacrificing resolution.


The resolution equation also shows that a wide range of different bonded phases, each offering a different selectivity, is a useful way to improve resolution.

$$R_{\rm s} = \frac{1}{4} \frac{(\alpha - 1)}{\alpha} \sqrt{N} \frac{k'}{1 + k'}$$

 α Selectivity

N Efficiency

k' Capacity factor

Good Resolution

Peak Capacity

As an alternative to speeding up analysis the excellent resolution offered by high efficiency columns can also be used to improve complex separations through an increase in peak capacity – the number of peaks that can be separated in a given gradient time.

$$n_c = 1 + \left(\frac{t_g}{W}\right)$$

 n_c Peak capacity

Gradient time

W Peak width (10% height)

Sensitivity

According to the formula shown below, sensitivity is increased in high efficiency separations by increasing the concentration of the peak and thus the detector signal to noise ratio.

$$c_{max} \propto \frac{\sqrt{N} V_i}{L d_c^2 (1+k')}$$

 c_{\max} Concentration at peak apex N Efficiency

- V_i Injection volume
- L Column length
- d_{c} Column internal diameter
- k^\prime Capacity factor

Miniaturization

The sensitivity formula also shows that peak concentration can be increased through the use of shorter columns and more importantly, with narrower column internal diameters.

When transferring a method to a different column geometry adjustments must be made to the following parameters:

- Flow Rate
- Injection Volume
- Gradient Profile

A convenient method transfer tool is available at the Chromatography Resource Center (www.thermoscientific.com/crc).

Optimization

In order to preserve high efficiency, and therefore resolution and sensitivity, the HPLC system in use should be optimized to reduce any potential causes of peak broadening. See page **4-231** for details of this optimization.

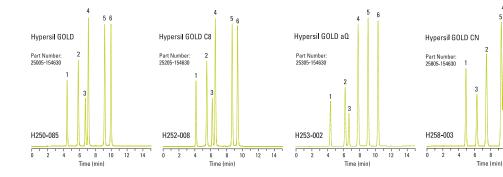
Thermo Scientific Hypersil GOLD HPLC Columns

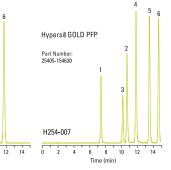
Outstanding peak shape for your separations

- Excellent peak symmetry
- Narrow peaks for outstanding efficiency
- Increased sensitivity and improved resolution
- Variety of chemistries
- 1.9 to 12µm particles

Thermo Scientific[™] Hypersil GOLD[™] columns are exceptionally reproducible for reliable chromatography, column after column. This allows the user to be confident that assays developed with Hypersil GOLD columns will be robust and stable for the life of the assay, making them an ideal choice for new method development. Built on more than 35 years of experience in product development and manufacturing of HPLC media and columns, we successfully continue to extend the capabilities of this state-of-the-art family of columns, designed for improved chromatography. Hypersil GOLD columns are manufactured in ISO 9001:2008 accredited laboratories under strict protocols using a robust manufacturing procedure and extensive quality control testing.

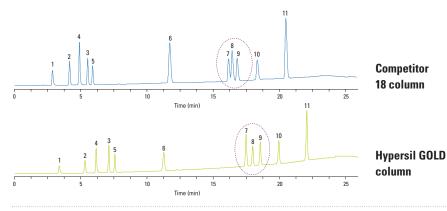
Improved Selectivity, Resolution and Productivity

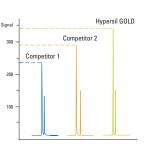

Hypersil GOLD columns are available in an array of chemistries to optimize separations and maximize productivity:


- **Hypersil GOLD** offers outstanding peak shape using generic gradients with C18 selectivity
- Hypersil GOLD C8 offers similar selectivity but with less retention
- Hypersil GOLD aQ can be used for challenging reverse phase separations employing highly aqueous mobile phases
- Hypersil GOLD PFP can offer alternative selectivity in reverse phase applications
- Hypersil GOLD Phenyl offers alternative selectivity and is particularly suitable for aromatic and moderately polar compounds
- Hypersil GOLD CN can be used for both reversed and normal phase separations
- Hypersil GOLD C4 has short alkyl chain length, low hydrophobicity column for less retention
- Hypersil GOLD Amino demonstrates excellent chromatographic properties in three modes: weak anion exchange, reversed phase and normal phase.

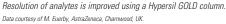
- Hypersil GOLD AX can be used to separate proteins, peptides, other anionic species and polar molecules
- **Hypersil GOLD SAX** is a highly stable silica-based quarternary amine strong anion exchange column, designed for aqueous mobile phase
- Hypersil GOLD Silica is a powerful and efficient tool in the chromatography of non-polar and moderately polar organic compounds by normal phase
- **Hypersil GOLD HILIC** columns retain polar analytes that are problematic using reversed phase columns

These chemistries offer alternative selectivities in the same column family, providing enhanced retention or changes in elution order for flexibility in method development. Each phase is made with the same care and attention to quality that defines all Thermo Scientific columns.




Hypersil GOLD, 5µm, 150 x 4.6mm

10


Mobile Phase:	A: H2O + 0.1% Formic acid B: MeOH + 0.1% Formic acid
Gradient:	20 to 50% B in 15 min
Flow Rate:	1mL/min
Detection:	UV at 280nm
Temperature:	25°C
Sample:	1. Catechin 2. Epigallocatechin Gallate 3. Epicatechin 4. Gallocatechin Gallate 5. Epicatechin Gallate 6. Catechin Gallate

4-024

The improved peak symmetry provides additional peak height to increase sensitivity of analysis of trace components.

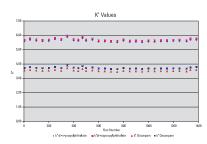
Solutions for High Throughput Screening, Capillary to Preparative Analysis

Hypersil GOLD columns are available in particle sizes and column designs to meet all separation needs, including improved resolution, enhanced sensitivity and faster analyses. From 1.9µm to 12µm particles, Hypersil GOLD columns offer chromatographic solutions with consistent separations and performance. Specialized hardware includes Thermo Scientific[™] KAPPA[™] capillary columns, PicoFrit[™] and IntegraFrit nanobore columns, Thermo Scientific[™] Javelin[™] HTS direct-connection columns and Thermo Scientific[™] DASH[™] HTS columns, designed for high throughput screening.

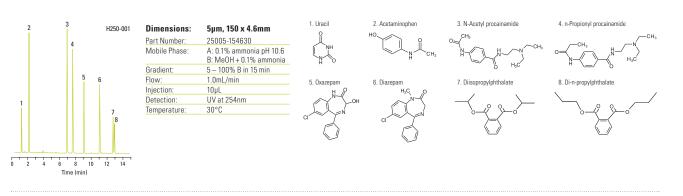
Improved Sensitivity


Good peak shape means greater sensitivity. When peaks exhibit tailing, peak height is reduced causing the sensitivity of the analysis to be compromised. The more symmetrical the chromatographic peaks, the more confidence you derive from your data. Using Hypersil GOLD columns, peak height is enhanced and peak integration calculations are optimized. Enhanced peak height can be particularly critical when low concentrations of an analyte are present, for example in an impurity assay. The increase in sensitivity gained with the Hypersil GOLD columns over competitor C18 columns is illustrated above.

Enhanced Resolution

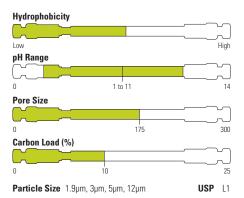

Robust assay development requires a clear definition of resolution expectations. Narrow symmetrical chromatographic peaks ensure that optimum resolution is achieved. Obtaining narrow peak widths is especially challenging for basic pharmaceutical compounds. The figure above shows how Hypersil GOLD columns provide excellent resolution between critical pairs, aiding in separation of closely related species.

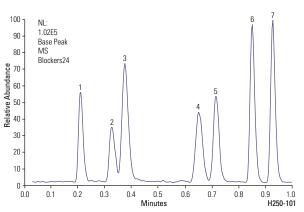
pH Stability


Hypersil GOLD columns are well suited to extended pH applications. Hypersil GOLD columns have been shown to produce robust assays at high pH. At low pH, excellent column stability and reproducibility are illustrated.

Excellent reproducibility is illustrated with the percent carbon on the Hypersil GOLD media

Stability of Hypersil GOLD columns at low pH. No loss of retention after 28L of mobile phase in 19.5 days of analysis.




High pH stability assay (pH 10.6) of Hypersil GOLD columns

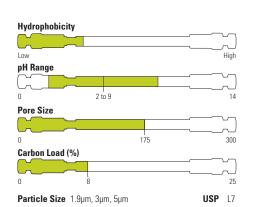
Hypersil GOLD

Endcapped, ultrapure, silica-based columns with exceptional peak shape and resolution for HPLC and LC/MS

- Significant reduction in peak tailing while retaining C18 selectivity
- Excellent resolution, efficiency and sensitivity
- Confidence in the accuracy and quality of analytical data

Seven β -blockers in 1 minute

Column: 1.9µm Hypersil GOLD 20 x 2.1mm


Part Number: 2	25002-022130
Mobile phase:	A – H ₂ O+0.1%formic acid
	B – MeCN+0.1%formic acid
Gradient:	15 to 100% B in 1min
Flow rate:	0.5ml/min
Temperature:	30°C
Detection:	+ESI
System:	Thermo Scientific™Surveyor™ MSQ
Analytes:	1. Atenolol
	2. Nadolol
	3. Pindolol
	4. Timolol
	5. Metoprolol
	6. Oxprenolol
	7. Propanolol

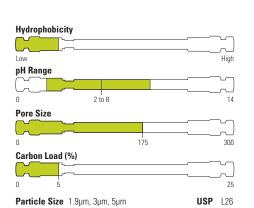
Hypersil GOLD C8

Recommended for analytes with medium hydrophobicity or when a less hydrophobic phase is required to obtain optimum retention

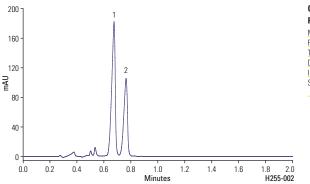
- Similar selectivity to C18 columns but with reduced retention
- Lower hydrophobicity, allowing compounds to elute quicker
- Faster separations
- Excellent peak shape
- High efficiency
- Outstanding sensitivity

600 · 500· 400 -300 · mAU 200 100 0 0 2 3 4 5 6 Minutes H252-009

Column: Hypersil GOLD C8, 5µm, 150 x 4.6mm Part Number: 25205-154630


Aobile phase:	MeOH
low rate:	1.5mL/min
emperature:	25°C
)etection:	UV @ 450 nm
Analytes:	1. Lutein
	2. Lycopene
	β-Carotene

 β -carotene


Hypersil GOLD C4

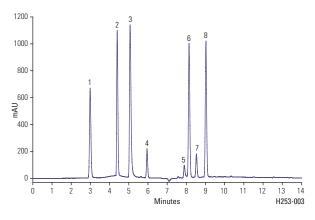
Lower hydrophobicity than C18 or C8 recommended for very hydrophobic analytes

- Lower hydrophobicity
- Faster separations
- Excellent peak shape
- High efficiency
- Outstanding sensitivity

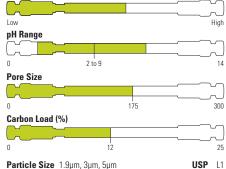
Fatty acids

Column: Hypersil GOLD C4 1.9µm, 100 x 2.1mm Part Number: 25502-102130

Mobile phase:	H ₂ O / MeCN (20:80)
Flow rate:	0.55mL/min
Temperature:	30°C
Detection:	200 nm
Injection volume:	1µL
Sample:	1. Linolenic acid
	2. Linoleic acid



Hypersil GOLD aQ

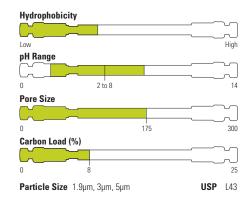

Hypersil GOLD aQ polar endcapped C18 columns provide a controlled interaction mechanism by which polar analytes can be retained and resolved

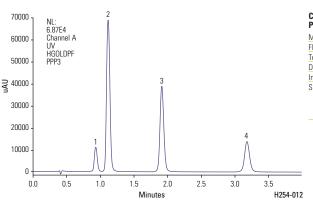
- Polar endcapped C18 phase for alternative selectivity
- Retention and resolution of polar analytes
- Excellent peak shape
- Stable in 100% aqueous mobile phases

Water soluble vitamins

Hydrophobicity

Column: Hypersil GOLD aQ, 5µm, 150 x 4.6mm Part Number: 25305-154630 Mobile phase: A: 50 mM KH2P04, pH 3.5 B: MeOH Gradient: 0 – 100% B in 15 min


	D. MCOTT
Gradient:	0 – 100% B in 15 min
Flow Rate:	1mL/min
Detection:	UV @ 205nm
Sample:	1. Vitamin B1 (thiamine)
	Vitamin B6 (pyridoxine)
	3. Vitamin B3 (nicotinamide)
	4. Vitamin B5 (pantothenic acid)
	5. Folic Acid
	6. Vitamin B12 (cyanocobalamin)
	7. Vitamin H (biotin)
	8 Vitamin B2 (riboflavin)

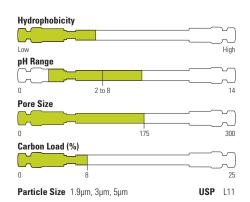

Hypersil GOLD PFP

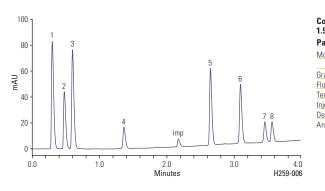
Introduction of a fluorine group into the stationary phase causes significant changes in solute-stationary phase interaction

- The fluorine atoms around the phenyl ring enhance pi-pi interactions with aromatic molecules
- Alternative selectivity to C18
- Extra retention for halogenated species
- Selectivity for non-halogenated polar compounds
- Excellent peak shape and sensitivity

Polyphenols

Column: Hypersil GOLD PFP 1.9µm, 50 x 2.1mm

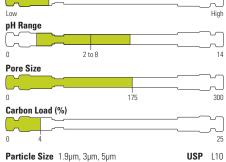

Part Number: 25	402-032130
Mobile phase:	0.1% Acetic Acid
Flow rate:	0.5mL/min
Temperature:	25°C
Detection:	UV @ 280nm (2µL Flow Cell)
njection Volume:	0.5µL
Sample:	1. Pyrogallol
	2. Hydroquinone
	3. Resorcinol
	4. Phenol


Hypersil GOLD Phenyl

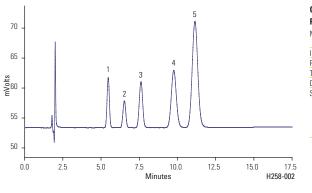
Contains a C4 linker which allows for superior alignment of the phenyl ring with aromatic molecules

- Enhanced pi-pi interactions with aromatics
- Moderate hydrophobicity
- Outstanding peak shape and sensitivity

Antidepressants


olumn: Hypersil GOLD Phenyl 9µm, 50 x 2.1mm art Number: 25902-052130		
	B – 0.1% Formic acid in MeCN	
radient: 10 – 60%	B in 3.4mins, 60 - 90% B in 0.24 min	
ow rate:	0.5mL/min	
emperature:	60°C	
jection Volume:	0.7µL	
etection:	UV @ 225 and 254 nm	
nalytes:	1. Uracil	
	2. Acetaminophen	
	p-Hydroxybenzoic acid	
	o-Hydroxybenzoic acid	
	5. Oxazepam	
	6. Diazepam	
	7. Di-isopropyl phthalate	
	8. Di-n-propyl phthalate	

Hypersil GOLD CN


Hypersil GOLD CN columns can be used for both normal phase and reversed phase separations

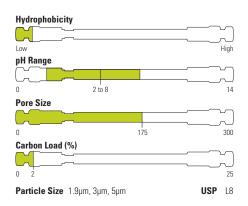
- Provide alternative selectivity with lower hydrophobicity
- Excellent peak shape
- Outstanding senstivity
- Less retention for faster analysis

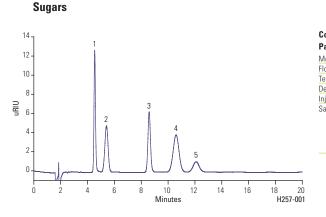
Hydrophobicity

Organic acids

Column: Hypersil GOLD CN, 5µm, 150 x 4.6mm

Part Number: 25805-154630 Mobile Phase: A: 25 mM KH₂PO₄ pH2 B: MeOH 95% A: 5% B Isocratic: Flow Rate: 1.5mL/min Temperature 25°C UV @ 230nm Detection: Sample: 1. 4-Fluorobenzoic 2. o-Toluic Acid 3. p-Toluic Acid 4. 2,4,6-Trimethylbenzoic Acid 5. 2,5-Dimethylbenzoic Acid




Thermo Scientific Chromatography Columns and Consumables 2014-2015

Hypersil GOLD Amino

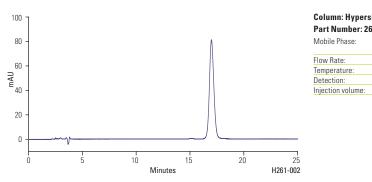
A high performance aminopropyl phase that gives excellent chromatographic properties in three modes: weak anion exchange, reversed phase and normal phase

- Retains anions and organic acids in weak anion exchange
- Excellent for carbohydrate analysis in reversed phase
- Alternative selectivity to silica columns in normal phase chromatography
- Outstanding peak shape and sensitivity

Column: Hypersil GOLD Amino, 5µm, 150 x 4.6mm Part Number: 25705-154630

art wulliber: 20700-104030		
lobile Phase:	MeCN/Water (80:20)	
ow Rate:	1.2mL/min	
emperature:	35°C	
etection:	RI	
jection volume:	20 µL	
ample:	1. Fructose	
	2. Glucose	
	3. Sucrose	
	4. Maltose	
	5. Lactose	

Hypersil GOLD AX

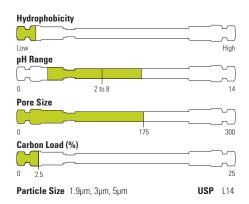

A novel polymeric amine ligand bonded to highly pure base deactivated silica

- Weak anion exchange phase for multiple charged species
- Suitable for HILIC retention and separation of highly polar molecules
- Higher efficiency than polymer based ion exchange columns
- Outstanding peak shape and selectivity

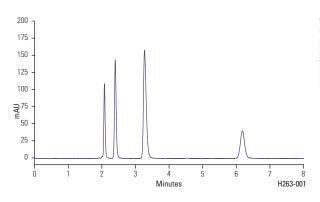
Hydrophobicity

··/	
	\
Low	High
pH Range	
	<u> </u>
0 2 to 8	14
Pore Size	
0 175	300
	500
Carbon Load (%)	
0 6	25
5 0	20
Particle Size 1.9µm, 3µm, 5µm	

Vitamin C

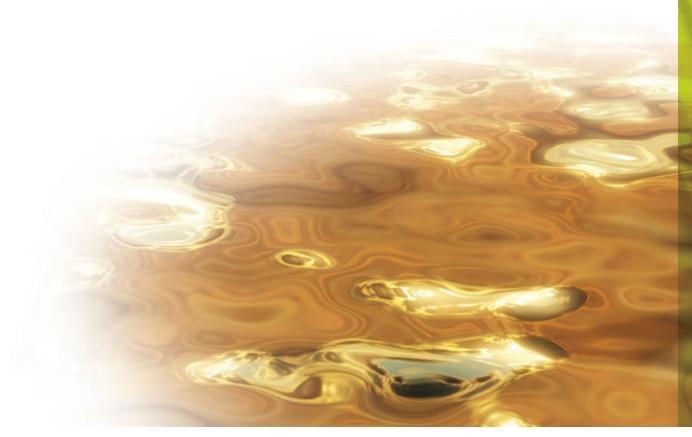

Column: Hypersil GOLD AX, 5µm, 100 x 4.6mm

art Number: 26105-104630		
lobile Phase:	100 mM Ammonium Acetate pH 6.8/ MeCN (30:70)	
ow Rate:	0.5mL/min	
emperature:	30°C	
etection:	UV @ 240nm	
jection volume:	50µL	


Hypersil GOLD SAX

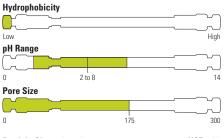
A highly stable quaternary amine strong anion exchange column for aqueous and low pH mobile phases

- High stability to aqueous and low pH mobile phases
- Ideally suited to the analysis of smaller organic molecules including nucleotides and organic acids
- Outstanding peak shape and sensitivity

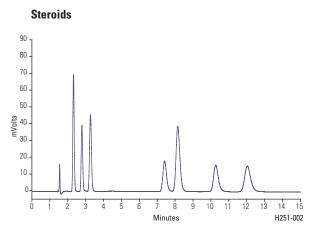


Monophosphates

Column: Hypersil GOLD SAX, 5µm, 150 x 4.6mm


Part Number: 26105-154630				
Mobile Phase:	Aqueous KH ₂ PO ₄ (50 mM, pH 3)			
Flow Rate:	1.0mL min-1			
Temperature:	40°C			
Detection:	UV @ 254nm			
niection volume:	10ul			

Hypersil GOLD Silica


Unbonded, highly pure base deactivated silica media that is the backbone of the Hypersil GOLD range of columns

- Highly pure base deactivated silica media
- Outstanding peak shape and senstivity

Particle Size 1.9µm, 3µm, 5µm

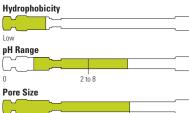
USP L3

Column: Hypersil GOLD Silica, 5µm, 150 x 4.6mm Part Number: 25105-154630

i uit iumber. 2	3103-134030
Mobile Phase:	19:1 (v/v) n-C6H14/EtOH
Flow Rate:	1.5mL min-1
Temperature:	30°C
Detection:	UV @ 254nm
Injection volume:	5µL
Sample:	1. Progesterone
	2.21-Hydroxyprogesterone-21-acetate
	3. 17-a-Hydroxyprogesterone
	4. Cortisone
	5. 11-a-Hydroxyprogesterone
	6. Corticosterone
	7. Hydrocortisone

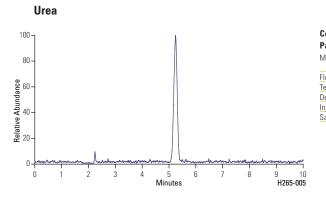
The Hypersil GOLD web page contains the latest news, applications and downloads for the Hypersil GOLD HPLC column range. Visit: www.thermoscientific.com/hypersilgold

Thermo Scientific Chromatography Columns and Consumables 2014-2015


High


14

Hypersil GOLD HILIC


Hypersil GOLD HILIC retains and separates polar analytes that are problematic using reversed phase columns

- Alternative selectivity to C18
- Improved sensitivity for MS detection
- Alternative to ion-pair or derivatisation
- Outstanding peak shape and selectivity

Particle Size 1.9µm, 3µm, 5µm

Column: Hypersil GOLD HILIC, 5µm, 150 x 4.6mm Part Number: 26505-154630

art Number: 20	303-134030
Nobile Phase:	H ₂ O/MeCN (10:90) + 0.1% formic adic
low Rate:	0.6mL/min
emperature:	30°C
letection:	+ESI
njection volume:	1µL (made up in mobile phase)
ample:	1. Urea

Hypersil GOLD Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	GOLD	C8	aQ	PFP
1.9	UHPLC Column	20	2.1	25002-022130	25202-022130	25302-022130	25402-022130
		30	1.0	25002-031030	_	_	_
			2.1	25002-032130	25202-032130	25302-032130	25402-032130
		50	1.0	25002-051030	25202-051030	25302-051030	25402-051030
			2.1	25002-052130	25202-052130	25302-052130	25402-052130
			3.0	25002-053030	25202-053030	25302-053030	25402-053030
			4.6	25002-054630	25202-054630	25302-054630	25402-054630
		100	1.0	25002-101030	25202-101030	25302-101030	25402-101030
			2.1	25002-102130	25202-102130	25302-102130	25402-102130
			3.0	25002-103030	25202-103030	25302-103030	25402-103030
		150	2.1	25002-152130	25202-152130	25302-152130	25402-152130
		200	2.1	25002-202130	25202-202130	25302-202130	25402-202130
3	Drop-in Guard (4/pk)	10	1.0	25003-011001	25203-011001	25303-011001	25403-011001
			2.1	25003-012101	25203-012101	25303-012101	25403-012101
			3.0	25003-013001	25203-013001	25303-013001	25403-013001
			4.0/4.6	25003-014001	25203-014001	25303-014001	25403-014001
	HPLC Column	30	2.1	25003-032130	25203-032130	25303-032130	25403-032130
			3.0	25003-033030	25203-033030	25303-033030	25403-033030
			4.6	25003-034630	25203-034630	25303-034630	25403-034630
		50	2.1	25003-052130	25203-052130	25303-052130	25403-052130
			3.0	25003-053030	25203-053030	25303-053030	25403-053030
			4.0	25003-054030	25203-054030	25303-054030	25403-054030
			4.6	25003-054630	25203-054630	25303-054630	25403-054630
		100		•••••		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••
	100	1.0	25003-101030	25203-101030	25303-101030	25403-101030	
			2.1	25003-102130	25203-102130	25303-102130	25403-102130
		3.0	25003-103030	25203-103030	25303-103030	25403-103030	
		4.0	25003-104030	25203-104030	25303-104030	25403-104030	
	150	4.6	25003-104630	25203-104630	25303-104630	25403-104630	
	150	1.0	25003-151030	25203-151030	25303-151030	25403-151030	
			2.1	25003-152130	25203-152130	25303-152130	25403-152130
			3.0	25003-153030	25203-153030	25303-153030	25403-153030
			4.0	25003-154030	25203-154030	25303-154030	25403-154030
			4.6	25003-154630	25203-154630	25303-154630	25403-154630
5	Drop-in Guard (4/pk)	10	2.1	25005-012101	25205-012101	25305-012101	25405-012101
			3.0	25005-013001	25205-013001	25305-013001	25405-013001
			4.0/4.6	25005-014001	25205-014001	25305-014001	25405-014001
HPLC Column	HPLC Column	30	2.1	25005-032130			_
			3.0	25005-033030		_	_
			4.6	25005-034630		-	-
		50	2.1	25005-052130	25205-052130	25305-052130	25405-052130
			3.0	25005-053030	25205-053030	25305-053030	25405-053030
			4.6	25005-054630	25205-054630	25305-054630	25405-054630
		100	2.1	25005-102130	25205-102130	25305-102130	25405-102130
			3.0	25005-103030	25205-103030	25305-103030	25405-103030
			4.6	25005-104630	25205-104630	25305-104630	25405-104630
		150	2.1	25005-152130	25205-152130	25305-152130	25405-152130
			3.0	25005-153030	25205-153030	25305-153030	25405-153030
			4.0	25005-154030	25205-154030	25305-154030	25405-154030
				25005-154630	25205-154630	25305-154630	25405-154630
			4.6	23003-134030			
		250	4.6 2.1				***************************************
		250	2.1	25005-252130	25205-252130	25305-252130	25405-252130
		250					***************************************

	-
1	
6	-
	_
<u> </u>	
-	
	-
0	N
~ >	0
	-
	1
Č	5
2	7
	\sim
	× .
6	
- C)
	κ.
	× .
- 0	n
0	
	\mathbf{n}
0	
	2
_	<u> </u>
7	Ξ.
ā	Ď
ģ	Ď
ξ	D
0	D D D
0	D D O
0	D
	D D O
	D D V
	D D D
	D0
	D0
	D0
	DO // Columno
	Do // Columna
	Do // Columno f
	Do // Columna fo
	Do // Columno for
	Do // Columns for
	Do // Columna for
	DO // Columno for A
	DO // Columns for Ar
	DO // Columne for An
	DO // Columns for Ano
	DO // Columno for Anal
	DO // Columno for Analy
	DO // Columno for Analyt
	DO // Columne for Apolyti
	DO // Columno for Apolytic
	DO // Columno for A polytic
	Do // Columna for Analytica
	DO // Columns for Analytical
	DO // Columno for Analytical
	DO // Columna for Applytical I
	DO // Columno for Applytical I

Phenyl 25902-052130 25902-052130 25902-102130 - 25902-102130 25902-152130 25902-202130 25903-011001 25903-012101 25903-012101 25903-013001 25903-032130 - 25903-034630 25903-052130	CN - - - 25802-052130 - - 25802-052130 - - 25802-102130 - 25802-152130 25802-202130 25803-012101 25803-012101 25803-013001 25803-013001 25803-032130 - 25803-034630 25803-052130 -	Amino - - - 25702-052130 - - 25702-052130 - 25702-102130 - 25702-102130 25702-202130 25703-012101 25703-012101 25703-012101 25703-013001 25703-034630 - 25703-052130	AX - - - 26102-052130 - 26102-052130 - 26102-102130 - 26102-152130 26102-202130 26102-202130 26103-011001 26103-012101 26103-013001 26103-034630	SAX - - - 26302-052130 - - 26302-052130 - - 26302-102130 - 26302-102130 26302-152130 26302-202130 26303-011001 26303-012101 26303-012101 26303-013001 26303-032130 - 26303-034630	Silica 25102-052130 25102-052130 25102-102130 - 25102-152130 25102-202130 25103-012001 25103-012101 25103-012101 25103-013001 25103-032130 25103-032130 25103-0324520	HILIC - - - 26502-05213(- - - 26502-102130 - 26502-102130 - 26502-152130 26502-20213(26503-011001 26503-012101 26503-014001 26503-014001 26503-03213(-
- - 25902-102130 - 25902-202130 25902-202130 25903-011001 25903-012101 25903-012101 25903-032130 - 25903-034630		- - 25702-102130 - 25702-152130 25702-202130 25703-011001 25703-012101 25703-012101 25703-013001 25703-032130 - 25703-034630	- - 26102-102130 - 26102-152130 26102-202130 26103-012101 26103-012101 26103-013001 26103-014001 26103-032130 -	- - 26302-102130 - 26302-152130 26302-202130 26303-011001 26303-012101 26303-013001 26303-014001 26303-032130 -	- - 25102-102130 - 25102-152130 25102-202130 25103-012101 25103-012101 25103-013001 25103-014001 25103-032130 -	- - 26502-102130 - 26502-152130 26502-202130 26503-011001 26503-012101 26503-013001 26503-014001
- - 25902-102130 - 25902-202130 25902-202130 25903-011001 25903-012101 25903-012101 25903-032130 - 25903-034630		- - 25702-102130 - 25702-152130 25702-202130 25703-011001 25703-012101 25703-012101 25703-013001 25703-032130 - 25703-034630	- - 26102-102130 - 26102-152130 26102-202130 26103-012101 26103-012101 26103-013001 26103-014001 26103-032130 -	- - 26302-102130 - 26302-152130 26302-202130 26303-011001 26303-012101 26303-013001 26303-014001 26303-032130 -	- - 25102-102130 - 25102-152130 25102-202130 25103-012101 25103-012101 25103-013001 25103-014001 25103-032130 -	- - 26502-102130 - 26502-152130 26502-202130 26503-011001 26503-012101 26503-013001 26503-014001
- - 25902-102130 - 25902-202130 25902-202130 25903-011001 25903-012101 25903-012101 25903-032130 - 25903-034630		- - 25702-102130 - 25702-152130 25702-202130 25703-011001 25703-012101 25703-012101 25703-013001 25703-032130 - 25703-034630	- - 26102-102130 - 26102-152130 26102-202130 26103-012101 26103-012101 26103-013001 26103-014001 26103-032130 -	- - 26302-102130 - 26302-152130 26302-202130 26303-011001 26303-012101 26303-013001 26303-014001 26303-032130 -	- - 25102-102130 - 25102-152130 25102-202130 25103-012101 25103-012101 25103-013001 25103-014001 25103-032130 -	- - 26502-102130 - 26502-152130 26502-202130 26503-011001 26503-012101 26503-013007 26503-014007
- - 25902-102130 - 25902-202130 25902-202130 25903-011001 25903-012101 25903-012101 25903-032130 - 25903-034630		- - 25702-102130 - 25702-152130 25702-202130 25703-011001 25703-012101 25703-012101 25703-013001 25703-032130 - 25703-034630	- - 26102-102130 - 26102-152130 26102-202130 26103-012101 26103-012101 26103-013001 26103-014001 26103-032130 -	- - 26302-102130 - 26302-152130 26302-202130 26303-011001 26303-012101 26303-013001 26303-014001 26303-032130 -	- - 25102-102130 - 25102-152130 25102-202130 25103-012101 25103-012101 25103-013001 25103-014001 25103-032130 -	- - 26502-10213(- 26502-15213(26502-20213) 26503-01100 26503-01210 26503-01300 26503-01300
- 25902-152130 25902-202130 25903-011001 25903-012101 25903-013001 25903-032130 - 25903-034630	- 25802-152130 25802-202130 25803-011001 25803-012101 25803-013001 25803-014001 25803-032130 - 25803-034630	- 25702-152130 25702-202130 25703-011001 25703-012101 25703-013001 25703-032130 - 25703-032130	- 26102-152130 26102-202130 26103-011001 26103-012101 26103-013001 26103-014001 26103-032130 -	- 26302-152130 26302-202130 26303-011001 26303-012101 26303-013001 26303-014001 26303-032130 -	- 25102-152130 25102-202130 25103-011001 25103-012101 25103-013001 25103-014001 25103-032130 -	- 26502-15213(26502-20213) 26503-01100 26503-01210 26503-01300 26503-01400
- 25902-152130 25902-202130 25903-011001 25903-012101 25903-013001 25903-032130 - 25903-034630	- 25802-152130 25802-202130 25803-011001 25803-012101 25803-013001 25803-014001 25803-032130 - 25803-034630	- 25702-152130 25702-202130 25703-011001 25703-012101 25703-013001 25703-032130 - 25703-032130	- 26102-152130 26102-202130 26103-011001 26103-012101 26103-013001 26103-014001 26103-032130 -	- 26302-152130 26302-202130 26303-011001 26303-012101 26303-013001 26303-014001 26303-032130 -	- 25102-152130 25102-202130 25103-011001 25103-012101 25103-013001 25103-014001 25103-032130 -	- 26502-15213 26502-20213 26503-01100 26503-01210 26503-01300 26503-01400
- 25902-152130 25902-202130 25903-011001 25903-012101 25903-013001 25903-032130 - 25903-034630	- 25802-152130 25802-202130 25803-011001 25803-012101 25803-013001 25803-014001 25803-032130 - 25803-034630	- 25702-152130 25702-202130 25703-011001 25703-012101 25703-013001 25703-032130 - 25703-032130	- 26102-152130 26102-202130 26103-011001 26103-012101 26103-013001 26103-014001 26103-032130 -	- 26302-152130 26302-202130 26303-011001 26303-012101 26303-013001 26303-014001 26303-032130 -	- 25102-152130 25102-202130 25103-011001 25103-012101 25103-013001 25103-014001 25103-032130 -	- 26502-15213 26502-20213 26503-01100 26503-01210 26503-01300 26503-01400
- 25902-152130 25902-202130 25903-011001 25903-012101 25903-013001 25903-034030 - 25903-034630	- 25802-152130 25802-202130 25803-011001 25803-012101 25803-013001 25803-014001 25803-032130 - 25803-034630	- 25702-152130 25702-202130 25703-011001 25703-012101 25703-013001 25703-032130 - 25703-032130	- 26102-152130 26102-202130 26103-011001 26103-012101 26103-013001 26103-014001 26103-032130 -	- 26302-152130 26302-202130 26303-011001 26303-012101 26303-013001 26303-014001 26303-032130 -	- 25102-152130 25102-202130 25103-011001 25103-012101 25103-013001 25103-014001 25103-032130 -	- 26502-15213 26502-20213 26503-01100 26503-01210 26503-01300 26503-01400
25902-202130 25903-011001 25903-012101 25903-013001 25903-014001 25903-032130 - 25903-034630	25802-202130 25803-011001 25803-012101 25803-013001 25803-014001 25803-032130 - 25803-034630	25702-202130 25703-011001 25703-012101 25703-013001 25703-014001 25703-032130 - 25703-034630	26102-202130 26103-011001 26103-012101 26103-013001 26103-014001 26103-032130 -	26302-202130 26303-011001 26303-012101 26303-013001 26303-014001 26303-032130 -	25102-202130 25103-011001 25103-012101 25103-013001 25103-014001 25103-032130 -	26502-20213 26503-01100 26503-01210 26503-01200 26503-01300 26503-01400
25903-011001 25903-012101 25903-013001 25903-014001 25903-032130 - 25903-034630	25803-011001 25803-012101 25803-013001 25803-014001 25803-032130 - 25803-034630	25703-011001 25703-012101 25703-013001 25703-014001 25703-032130 - 25703-034630	26103-011001 26103-012101 26103-013001 26103-014001 26103-032130 -	26303-011001 26303-012101 26303-013001 26303-014001 26303-032130 -	25103-011001 25103-012101 25103-013001 25103-014001 25103-032130 -	26503-01100 26503-01210 26503-01300 26503-01400
25903-012101 25903-013001 25903-014001 25903-032130 - 25903-034630	25803-012101 25803-013001 25803-014001 25803-032130 - 25803-034630	25703-012101 25703-013001 25703-014001 25703-032130 - 25703-034630	26103-012101 26103-013001 26103-014001 26103-032130 -	26303-012101 26303-013001 26303-014001 26303-032130 -	25103-012101 25103-013001 25103-014001 25103-032130 -	26503-01210 26503-01300 26503-01400
25903-013001 25903-014001 25903-032130 - 25903-034630	25803-013001 25803-014001 25803-032130 - 25803-034630	25703-013001 25703-014001 25703-032130 - 25703-034630	26103-013001 26103-014001 26103-032130 -	26303-013001 26303-014001 26303-032130 -	25103-013001 25103-014001 25103-032130 -	26503-01300 26503-01400
25903-014001 25903-032130 - 25903-034630	25803-014001 25803-032130 - 25803-034630	25703-014001 25703-032130 - 25703-034630	26103-014001 26103-032130 -	26303-014001 26303-032130 -	25103-014001 25103-032130 -	26503-01400
25903-032130 - 25903-034630	25803-032130 - 25803-034630	25703-032130 - 25703-034630	26103-032130 -	26303-032130 -	25103-032130 -	
- 25903-034630	- 25803-034630	- 25703-034630			_	26503-03213
			_ 26103-034630		-	
			20103-034030	20303-034030		26503-03463
- - -	-	20700 002100	26103-052130	26303-052130	25103-034630 25103-052130	26503-05213
-	••••••	_	_	_	_	-
_	-	_	-	-	-	_
	-	_	-	-	-	-
-	_	-	_	_	_	_
25903-102130	25803-102130	25703-102130	26103-102130	26303-102130	25103-102130	26503-10213
25903-103030	25803-103030	25703-103030	26103-103030	26303-103030	25103-103030	26503-10303
-	-	-	-	-	-	-
						26503-10463
						26503-15103 26503-15213
						26503-15213
_	-	-	-	-	-	-
25903-154630	25803-154630	25703-154630	26103-154630	26303-154630	25103-154630	26503-15463
25905-012101	25805-012101	25705-012101	26105-012101	26305-012101	25105-012101	26505-01210
25905-013001	25805-013001	25705-013001	26105-013001	26305-013001	25105-013001	26505-01300
25905-014001	25805-014001	25705-014001	26105-014001	26305-014001	25105-014001	26505-01400
-	_	_				_
_	_	_	_	_	_	-
-	-	-	-	-	-	-
25905-052130	20800-002130	25705-052130	20100-002130	20300-002130	20100-002130	26505-05213
25905-054630	25805-054630	25705-054630	26105-054630	26305-054630	25105-054630	26505-05463
						26505-10213
25905-103030	25805-103030	25705-103030	26105-103030	26305-103030	25105-103030	26505-10303
25905-104630	25805-104630	25705-104630	26105-104630	26305-104630	25105-104630	26505-10463
25905-152130	25805-152130	25705-152130	26105-152130	26305-152130	25105-152130	26505-15213
_	_	_				_
-	_	_	_	_	_	_
25905-154630	25805-154630	25705-154630	26105-154630	26305-154630	25105-154630	26505-15463
25905-252130	25805-252130	25705-252130	26105-252130	26305-252130	25105-252130	26505-25213
						26505-25303
						26505-25403 26505-25463
	25903-103030 - 25903-104630 25903-151030 25903-152130 25903-152130 25903-154630 25905-012101 25905-012101 25905-012101 - 25905-052130 25905-054630 25905-102130 25905-104630 25905-152130 - 25905-154630	25903-103030 25803-103030 - - 25903-104630 25803-104630 25903-151030 25803-151030 25903-152130 25803-152130 25903-152130 25803-152130 25903-153030 25803-154630 25903-154630 25803-154630 25905-012101 25805-012101 25905-014001 25805-014001 25905-014001 25805-014001 - - - - 25905-052130 25805-052130 - - 25905-052130 25805-052130 - - 25905-054630 25805-103030 25905-102130 25805-104630 25905-103030 25805-104630 25905-104630 25805-152130 25905-152130 25805-154630 25905-154630 25805-252130 25905-252130 25805-252130 25905-252030 25805-253030 25905-254030 25805-254030	25903-103030 25803-103030 25703-103030 - - - 25903-104630 25803-104630 25703-104630 25903-151030 25803-151030 25703-151030 25903-152130 25803-152130 25703-152130 25903-152130 25803-152130 25703-152130 25903-153030 25803-154630 25703-154630 25903-154630 25805-012101 25705-012101 25905-012101 25805-012101 25705-012101 25905-014001 25805-014001 25705-014001 25905-052130 25805-014001 25705-052130 25905-052130 25805-054630 25705-052130 25905-054630 25805-102130 25705-054630 25905-102130 25805-102130 25705-102130 25905-103030 25805-104630 25705-104630 25905-104630 25805-104630 25705-104630 25905-152130 25805-152130 25705-152130 25905-154630 25805-154630 25705-154630 25905-154630 25805-154630 25705-154630 <t< td=""><td>25903-103030 25803-103030 25703-103030 26103-103030 - - - - 25903-104630 25803-104630 25703-104630 26103-104630 25903-151030 25803-151030 25703-151030 26103-151030 25903-152130 25803-152130 25703-152130 26103-152130 25903-152130 25803-152130 25703-152130 26103-154030 25903-154630 25803-154630 25703-154630 26103-154630 25905-012101 25805-012101 25705-012101 26105-012101 25905-013001 25805-013001 25705-013001 26105-013001 25905-014001 25805-014001 25705-014001 26105-014001 25905-014001 25805-052130 25705-052130 26105-052130 25905-052130 25805-052130 25705-054630 26105-054630 25905-054630 25805-102130 25705-102130 26105-102130 25905-102130 25805-102130 25705-104630 26105-102130 25905-104630 25805-104630 25705-104630 26105-104630</td><td>25903-103030 25803-103030 25703-103030 26103-103030 26303-103030 - - - - - - 25903-104630 25803-104630 25703-104630 26103-104630 26303-104630 25903-151030 25803-151030 25703-151030 26103-152130 26303-151030 25903-152130 25803-152130 25703-152130 26103-152130 26303-152130 25903-153030 25803-154630 25703-154630 26103-154630 26303-154630 25903-154630 25803-154630 25703-154630 26103-154630 26305-012101 25905-012101 25805-012101 25705-012101 26105-012101 26305-012101 25905-014001 25805-014001 25705-013001 26105-014001 26305-014001 25905-052130 25805-052130 25705-052130 26105-052130 26305-052130 25905-052130 25805-052130 25705-052130 26105-054630 26305-052130 25905-054630 25805-052130 25705-054630 26105-054630 26305-054630 25905-102130 2</td><td>25903-10303025803-10303025703-10303026103-10303026303-10303025103-10303025903-10463025803-10463025703-10463026103-10463026303-10463025103-10463025903-15103025803-15103025703-15103026103-15103026303-15103025103-15103025903-15213025803-15213025703-15213026103-15213026303-15213025103-15213025903-15303025803-15463025703-15463026103-15463026303-15463025103-15463025903-15463025803-15463025705-01210126105-01210126305-01210125103-15463025905-01210125805-01210125705-01210126105-01210126305-01300125105-01210125905-01300125805-01400125705-01300126105-01300126305-01400125105-01300125905-01400125805-01400125705-01400126105-01400126305-01400125105-015213025905-05213025805-05213025705-05213026105-05463026305-05463025105-05463025905-05463025805-10213025705-10213026105-10213026305-10213025105-10213025905-10213025805-10213025705-10213026105-10213026305-10213025105-10213025905-10213025805-10213025705-10213026105-1521</td></t<>	25903-103030 25803-103030 25703-103030 26103-103030 - - - - 25903-104630 25803-104630 25703-104630 26103-104630 25903-151030 25803-151030 25703-151030 26103-151030 25903-152130 25803-152130 25703-152130 26103-152130 25903-152130 25803-152130 25703-152130 26103-154030 25903-154630 25803-154630 25703-154630 26103-154630 25905-012101 25805-012101 25705-012101 26105-012101 25905-013001 25805-013001 25705-013001 26105-013001 25905-014001 25805-014001 25705-014001 26105-014001 25905-014001 25805-052130 25705-052130 26105-052130 25905-052130 25805-052130 25705-054630 26105-054630 25905-054630 25805-102130 25705-102130 26105-102130 25905-102130 25805-102130 25705-104630 26105-102130 25905-104630 25805-104630 25705-104630 26105-104630	25903-103030 25803-103030 25703-103030 26103-103030 26303-103030 - - - - - - 25903-104630 25803-104630 25703-104630 26103-104630 26303-104630 25903-151030 25803-151030 25703-151030 26103-152130 26303-151030 25903-152130 25803-152130 25703-152130 26103-152130 26303-152130 25903-153030 25803-154630 25703-154630 26103-154630 26303-154630 25903-154630 25803-154630 25703-154630 26103-154630 26305-012101 25905-012101 25805-012101 25705-012101 26105-012101 26305-012101 25905-014001 25805-014001 25705-013001 26105-014001 26305-014001 25905-052130 25805-052130 25705-052130 26105-052130 26305-052130 25905-052130 25805-052130 25705-052130 26105-054630 26305-052130 25905-054630 25805-052130 25705-054630 26105-054630 26305-054630 25905-102130 2	25903-10303025803-10303025703-10303026103-10303026303-10303025103-10303025903-10463025803-10463025703-10463026103-10463026303-10463025103-10463025903-15103025803-15103025703-15103026103-15103026303-15103025103-15103025903-15213025803-15213025703-15213026103-15213026303-15213025103-15213025903-15303025803-15463025703-15463026103-15463026303-15463025103-15463025903-15463025803-15463025705-01210126105-01210126305-01210125103-15463025905-01210125805-01210125705-01210126105-01210126305-01300125105-01210125905-01300125805-01400125705-01300126105-01300126305-01400125105-01300125905-01400125805-01400125705-01400126105-01400126305-01400125105-015213025905-05213025805-05213025705-05213026105-05463026305-05463025105-05463025905-05463025805-10213025705-10213026105-10213026305-10213025105-10213025905-10213025805-10213025705-10213026105-10213026305-10213025105-10213025905-10213025805-10213025705-10213026105-1521

.....

Hypersil GOLD Ordering Guide continued

Format		Length (mm)	ID (mm)	Cat. No.	
UNIGUARD Guard Cartridge Holder		10	1.0	851-00	
			2.1	852-00	
			3.0	852-00	
			4.0/4.6	850-00	
Particle Size (µm)	Format	Length (mm)	ID (mm)	GOLD	
Particle Size (um)	Format	Length (mm)	ID (mm)	GOLD	
1.9	Javelin HTS Column (3/pk)	10	2.1	25002-012135	
5	Javelin HTS Column (3/pk)	20	4.0	25005-024035	

Particle Size (µm)	Format	Length (mm)	ID (mm)	GOLD	aQ	PFP
5		10	10 (1111)	25005-019023	25305-019023	
C	Preparative Guard Cartridge (3/pk)	10	20	25005-019023	25305-019023	25405-01902 25405-01922
	Preparative HPLC	50	10	25005-019223	25305-019223	25405-01922
	Column	50	21	•••••••••••	••••	••••
	ooranni			25005-059270	25305-059270	25405-05927
			30	25005-059370	25305-059370	25405-05937
		400	50	25005-059570	25305-059570	25405-05957
		100	10	25005-109070	25305-109070	25405-10907
			21	25005-109270	25305-109270	25405-10927
			30	25005-109370	25305-109370	25405-10937
			50	25005-109570	25305-109570	25405-10957
		150	10	25005-159070	25305-159070	25405-15907
			21	25005-159270	25305-159270	25405-15927
			30	25005-159370	25305-159370	25405-15937
			50	25005-159570	25305-159570	25405-15957
		250	10	25005-259070	25305-259070	25405-25907
			21	25005-259270	25305-259270	25405-25927
			30	25005-259370	25305-259370	25405-25937
			50	25005-259570	25305-259570	25405-25957
Cartridge (3	Preparative Guard	10	10	25012-019023	_	_
	Cartridge (3/pk)		20	25012-019223	_	_
	Preparative HPLC	50	10	25012-059070	-	-
	Column		21	25012-059270	-	-
			30	25012-059370	-	-
			50	25012-059570	-	-
		100	10	25012-109070	-	-
			21	25012-109270	-	-
			30	25012-109370	_	_
			50	25012-109570	-	_
		150	10	25012-159070	-	_
		100	21	25012-159270	-	_
			30	25012-159370	_	_
			50	25012-159570	_	_
		250	10	25012-259070	_	_
			21	25012-259270	_	_
			30	25012-259370	_	_
			50	25012-259570	_	••••

Format	Length (mm)	ID (mm)	Cat. No.
Preparative Guard Cartridge Holder	10	10	C-1000
		20	854-00

4-040

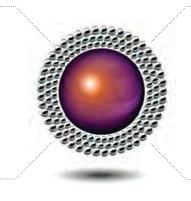
Notes	5
	Colu
	suuur
	and
	Acce
	olumns and Accessories
	100 M
	>> 0
	Columns for Analytical LC
	for Ana
	lytical L
	C
	14

LC Columns and Accessories

Thermo Scientific Accucore HPLC Columns

Ultimate Core Performance - Speed and Selectivity Combined

Founded on state-of-the-art Core Enhanced Technology[™] and utilizing vast experience in phase bonding and packing, Thermo Scientific[™] Accucore[™] HPLC columns provide a unique chromatography solution to enhance laboratory workflow and efficiency. Available in a wide range of stationary phase selectivities and compatible with almost any instrument, these columns provide an excellent return on investment. Containing solid core particles, which are engineered to a diameter of 2.6µm and a very narrow particle size distribution; Accucore HPLC columns allows high speed, high resolution separation, with back pressures significantly lower than those associated with UHPLC. Eleven different stationary phases bonded using advanced technology and packed with highly controlled automated processes result in highly reproducible, rugged columns that offer a wide range of selectivities to meet all your separation needs.


The key components of Core Enhanced Technology

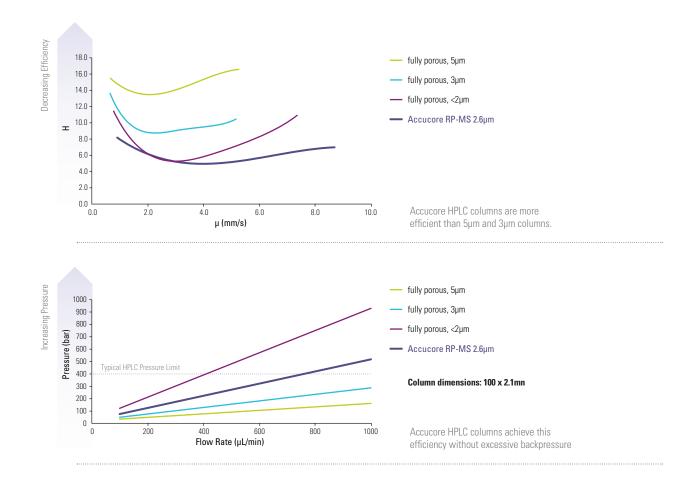
Solid Core Particles

With a solid central core and porous outer layer, these particles generate high speed, high resolution separations without excessive backpressure

Automated Packing Process

Enhanced automated procedures ensure that all columns are packed with the highest quality

Tight Control of Particle Diameter Enhanced selection process keeps particle size distribution to a minimum and produces high efficiency columns


Advanced Bonding Technology

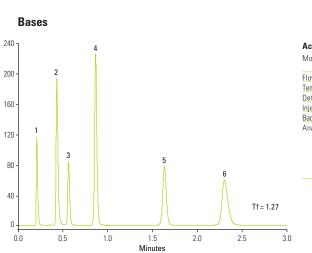
Optimized phase bonding creates a series of high coverage, robust phases

View product information and application notes

The Accucore web page contains the latest news, applications and downloads for the Accucore HPLC column range. Visit it at: www.thermoscientific.com/accucore

Accucore 2.6µm HPLC Columns Optimum Conditions and Ratings

Column ID (mm)	Optimum Flow Rate	Maximum Inj. Volume	Backpressure Rating	Temperature Rating
2.1	400µL/min	1µL	1000 bar	70°C
3.0	800µL/min	3µL	1000 bar	70°C
4.6	1800µL/min	5µL	1000 bar	70°C


Accucore RP-MS

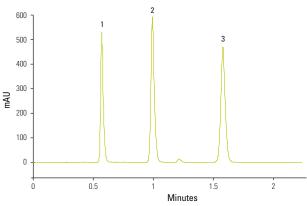
- Optimized for MS detection
- Excellent peak shapes
- Excellent combination of speed and efficiency

Accucore RP-MS uses an optimized alkyl chain length for more effective coverage of the silica surface. This coverage results in a significant reduction in non-hydrophobic interactions and thus highly efficient peaks with very low tailing.

RP-MS offers slightly lower retention than C18 and this combined with high efficiencies and low peak tailing make this the phase of choice for use with MS detection.

The selectivity offered by Accucore RP-MS matches that of C18 columns.

Hydrophobicity



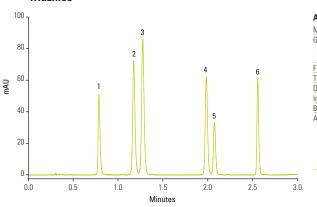
obile phase:	65% Methanol / 35% 25mM Potassium Phosphate pH7.0
w rate:	500µL/min
mperature:	30°C
tection:	UV at 215nm
ection volume:	1µL
ck pressure:	232 bar
alytes:	1.Uracil
	2. Propranolol
	Butylparaben
	4. Naphthalene
	5. Acenaphthene
	6. Amitriptyline

mAU

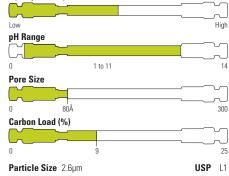
Accucore RP-MS 2.6µm, 100mm x 2.1mm

I

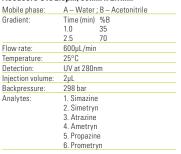
	to E.opini, toonini x E.thini
Mobile phase:	60:40 (v/v) Water / Acetonitrile
low rate:	0.6mL/min
lemperature:	40°C
Detection:	UV at 254nm
njection volume:	1µL
Analytes:	1. 11-Ketotestosterone
	2. 19-Nortestosterone (Nandrolone)
	3. Epitestosterone


Accucore C18

- Optimum retention of non-polar compounds
- Hydrophobic interaction mechanism
- Separates a broad range of analytes


The carbon loading of Accucore C18 phase provides high retention of non-polar analytes via a predominantly hydrophobic interaction mechanism.

The highly retentive nature of Accucore C18 phase means that it can be used to separate a broad range of analytes.

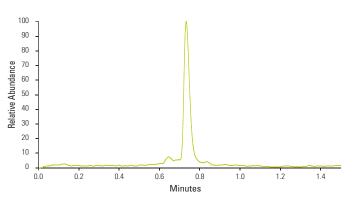

Triazines



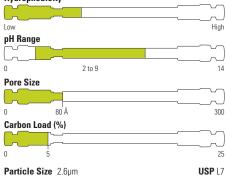
Hydrophobicity

Accucore C18 2.6µm, 50mm x 2.1mm

LC Columns and Accessories


Accucore C8

- Lower hydrophobic retention
- Complementary steric selectivity to C18
- · Low levels of secondary interactions
- · Recommended for moderately polar analytes


Accucore C8 HPLC columns offer lower hydrophobic retention than columns packed with longer alkyl chain length material, such as C18, and are therefore recommended for analytes with medium hydrophobicity or when a less hydrophobic phase provides optimum retention.

The low levels of secondary interactions demonstrated in the phase characterization are the result of excellent bonded phase coverage and allow users of Accucore C8 HPLC columns to benefit from excellent peak shapes.

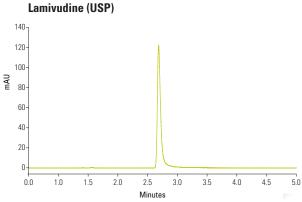
Hydrophobicity

Mobile phase A: water + 0.1% formic acid acetonitrile + 0.1% formic acid Mobile phase B: 5–95 % B in 0.8 minutes Gradient: Flow: 1500 µL/min Temperature: 60 °C Injection: 5µL ESI-MS/MS%RSD Peak area

Accucore C8 2.6µm, 50 x 2.1mm

Detection

Retention time (tR /min)	0.73
%RSD tR	0.22
%RSD Area	3.01


Data from six injections.

Accucore aQ

- Retention and resolution of polar analytes
- Polar endcapped C18 stationary phase for alternative selectivity
- · Ideal for highly aqueous mobile phases

The polar functional group used to endcap Accucore aQ phase provides an additional controlled interaction mechanism by which polar compounds can be retained and resolved, making Accucore aQ phase ideal for the quantitative analysis of trace levels of polar analytes.

The wettability of reversed phase media can be increased by the introduction of polar functional groups. The polar endcapping of Accucore aQ media also makes it usable in 100% aqueous mobile phases without the risk of loss of performance or poor stability.

Hydrophobicity

Accucore aQ 2.6µm, 50mm x 2.1mm

Mobile phase:

Flow rate:

Temperature

Injection volume:

%RSD Peak area

Detection:

Analytes: Asymmetry

%RSD t_r

95:5 (v/v) Ammonium Acetate,

pH 3.80 / Methanol

200µL/min

UV at 277nm

Lamivudine

USP acceptance criteria: % RSD (t,, Peak Area) <2.0

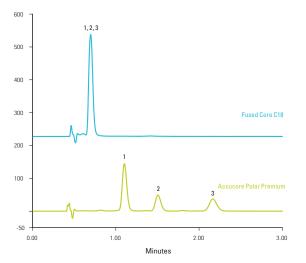
35°C

1µL

1.36

0.00

1.72 (%RSD calculated from 6 replicate injections)


Accucore Polar Premium

- Rugged amide-embedded C18 phase
- Selectivity complementary to conventional C18 phases
- Stable over a wide pH range and compatible with 100% aqueous mobile phase

Accucore Polar Premium is an exceptionally rugged polar embedded reverse phase material that offers high efficiency, wider operating pH range and unique selectivity complementary to standard C18 phases.

The specially designed bonded phase is stable from pH 1.5 to 10.5 and will not undergo phase collapse in 100% aqueous mobile phase.

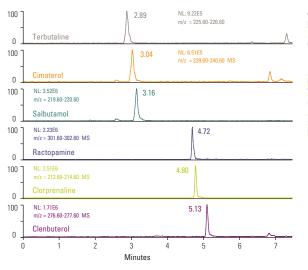
Curcuminoids (Tumeric)

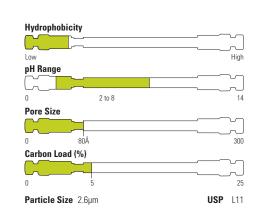
Hydrophobicity Low High pH Range 1.5 to 10 n 14 **Pore Size** 150 Å 0 300 Carbon Load (%) 25 0 Particle Size 2.6µm USP L60

Accucore Polar Premium 2.6µm, 100 x 3.0mm

Fused Core C18,	, 100 x 3.0 mm
Mobile phase:	methanol : 10mM phosphoric acid, 80 : 20
Flow:	800 µL/min
Temperature:	40 °C
Injection:	6µL
Detection:	UV at 428nm
Analytes:	1. Curcumin
	Desmethoxycurcumin
	3. Bis-desmethoxycurcumin

The Accucore Polar Premium HPLC column provides desirable selectivity that resolves the major and minor component under simple isocratic conditions in less than three minutes, while the C18 columns fail to separate these components.


Accucore Phenyl-Hexyl


- · Mixed-mode selectivity for aromatic and moderately polar analytes
- Enhanced Pi-pi interactions with aromatics
- Moderate hydrophobicity

The C6 chain in Accucore Phenyl-Hexyl phase exhibits classical RP retention and selectivity, while the phenyl ring can add special selectivity by interacting with polar groups within the solutes. This results in a mixed-mode separation mechanism. The reduced hydrophobicity of this phase makes it ideal for the separation of very non-polar compounds.

The Phenyl-Hexyl phase should be selected for complex samples where some peaks are well resolved on a conventional alkyl phases, but are not well resolved on a conventional phenyl phase, or when other peaks are well resolved on a phenyl phase, but not well resolved on a conventional alkyl phase.

Beta-agonists

Accucore Phenyl-Hexyl 2.6µm, 100mm x 2.1mm

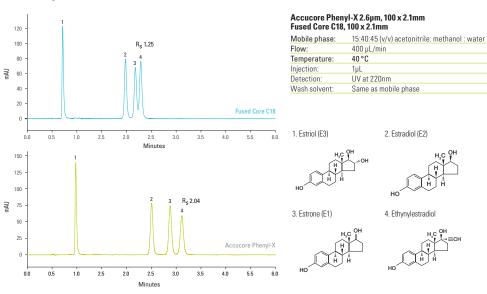
Mobile phase:	A – Ammo	nium acetate 5mM, pH 4
	B – Acetor	nitrile
Gradient:	Time (min)	%B
	0	5
	1	5
	10	100
Flow rate:	0.25mL/mi	in
Temperature:	40°C	
Detection:	+ESI-MS (4 scan 150 -	45°C, 4.5kV, 60V, - 350)
Injection volume:	1µL	
Backpressure:	120 bar (at	t0)

Accucore Phenyl-X

- Unique reversed-phase shape selectivity
- Enhanced selectivity for aromatic compounds
- Compatible with highly aqueous mobile phases
- Robust, high-efficiency, low column bleed

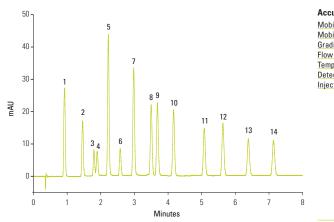
The proprietary Accucore Phenyl-X alkyl aromatic bonded phase provides a unique selectivity when compared to other reversed phase materials such as C18 or Phenyl.

Phenyl-X exhibits particularly high aromatic selectivity.


The advanced design of the bonded phase makes it compatible with highly aqueous mobile phases and robust, demonstrating very low bleed.

Estrogens

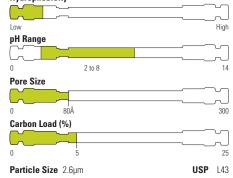
Low	۲	High
pH Range	2 to 8	14
Pore Size	0 Â	300
Carbon Load (C	- 	25


Accucore PFP

- Alternative selectivity to C18
- Extra retention for halogenated species
- Unique selectivity for non-halogenated polar compounds

The introduction of fluorine groups into the Accucore PFP (pentafluorophenyl) stationary phase causes significant changes in solute-stationary phase interactions. This can lead to extra retention and selectivity for positional isomers of halogenated compounds.

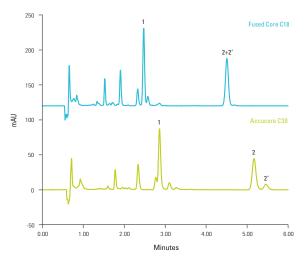
PFP Columns are also well suited to the selective analysis of non-halogenated compounds, in particular polar compounds containing hydroxyl, carboxyl, nitro, or other polar groups. High selectivity is often most apparent when the functional groups are located on an aromatic or other rigid ring system.


Positional isomers

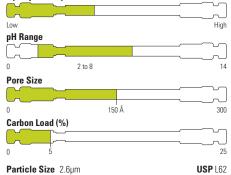
Accucore PFP 2.6µm, 50mm x 2.1mm

	opini, oonini x £.mini
ile phase:	A – 0.1% Formic Acid in Water
ile phase:	A-0.1% Formic Acid in Acetonitrile
lient:	15-30%B in 7 minutes
rate:	600µL/min
perature:	50°C
ction:	UV at 270nm
tion volume:	2µL
	1. 3.4 – Dimethoxyphenol 2. 2,6 – Dimethoxyphenol 3. 2,6 – Difluorophenol 4. 3,5 – Dimethoxyphenol 5. 2,4 – Difluorophenol 7. 3,4 – Difluorophenol 8. 3,5 – Dimethylphenol 10. 2,6 – Dimethylphenol 10. 2,6 – Dichlorophenol 11. 4 – Chloro-3-Methylphenol 12. 4 – Chloro-2-Methylphenol 13. 3,4 – Dichlorophenol 14. 3,5 – Dichlorophenol

Hydrophobicity


Accucore C30

- Ideal for separation of hydrophobic, long alkyl chain compounds
- High shape selectivity for structurally related isomers
- Excellent aqueous-compatibility


Accucore C30 offers high shape selectivity for hydrophobic, long chain, structurally related isomers, for example carotenoids and steroids. This is a different form of shape selectivity from that measured in the SS phase characterisation test.

It is also an excellent alternative to normal-phase columns for lipid analysis. The optimized bonding density of the long alkyl chains facilitated by a wider pore diameter particle result in a phase that is stable even in highly aqueous mobile phases.

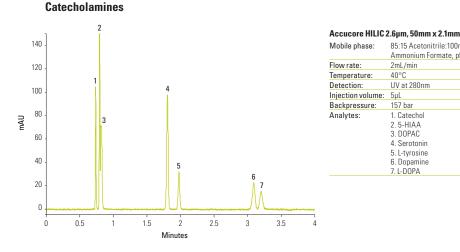
Vitamin K isomers

Hydrophobicity

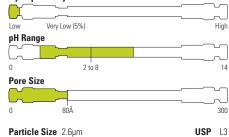
Accucore C30 2.6µm, 100 x 3.0mm Fused Core C18, 100 x 3.0mm

	······································	
Mobile phase:	methanol: 2mM ammonium acetate, 98:2	
Flow:	650µL/min	
Temperature:	20 °C	
Injection:	5µL	
Detection:	UV at 250nm	
Accucore C30 shows better separation for vitamin K1 isomers than the C18 column.		

Chromatogram showing the separation of Vitamin K compounds Minutes 1-Vitamin K2, 2-Vitamin K1 (trans isomer), 2'-Vitamin K1 (cis isomer)


Accucore HILIC

- Enhanced retention of polar and hydrophilic analytes
- Alternative selectivity to C18 without ion-pair or derivatization


In HILIC mode the separation occurs through two mechanisms. The primary mechanism is a partitioning effect due to the enriched water layer around the polar or charged substrate material. The secondary mechanism involves interaction between the analyte and the active surface moiety.

Analyte properties that govern retention with HILIC phases are acidity/basicity, which determines hydrogen bonding, and polarizability which determines dipoledipole interactions.

The highly organic mobile phases used with Accucore HILIC phase ensure efficient desolvation in ESI MS detection, which in turn leads to improved sensitivity.

Hydrophobicity

85:15 Acetonitrile:100mM Ammonium Formate, pH 3.2

2mL/min

40°C UV at 280nm

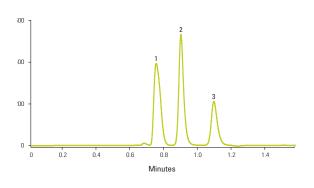
157 ba

1. Catechol

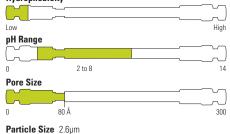
2.5-HIAA 3.DOPAC

4. Serotonin 5. L-tyrosine

6. Dopamine 7. L-DOPA


Accucore Urea-HILIC

- Bonded hydrophilic stationary phase
- Unique selectivity compared to other HILIC phases
- Low ion exchange activity


Accucore Urea-HILIC has an alternative selectivity and lower ion exchange activity than other HILIC phases.

The bonded hydrophilic stationary phase provides retention of broad range of polar analytes using up to 20% aqueous mobile phase.

Analgesic compounds

Hydrophobicity

Accucore Urea-HILIC 2.6µm, 100 x 2.1mm

Mobile phase:	composition 10:80:10, A : B : C
	A: water
	B: acetonitrile
	C: 100 mM ammonium acetate adjusted to pH 4.9
Flow:	300 µL/min
Run Time:	2 minutes
Temperature:	35 °C
Injection:	2 µL into 10 µL partial loop mode.
Injection wash	
solvent:	water:acetonitrile 20:80
Detection:	UV at 230 nm
Backpressure:	71 bar

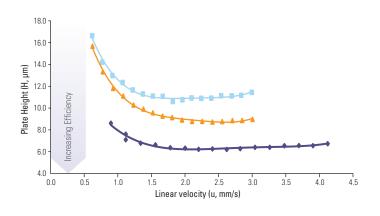
	Acetami	nophen	Sa	alicylic ac	id		Aspirin	
	t _R	A _s	t _R	As	R _s	t _R	As	R _s
Mean	0.760	1.474	0.908	1.303	2.359	1.100	1.318	3.264
CV %	0.00	1.17	0.48	0.92	0.49	0.00	0.63	0.48

Data from eight replicate analyses of a mixture of acetaminophen, salicylic acid and aspirin

. Retention time (t_a), peak asymmetry (A_a), peak resolution (R_a)

Accucore XL HPLC Columns

Based on Core Enhanced Technology using 4µm solid core particles, Accucore XL HPLC columns allow users of conventional HPLC methods to enjoy performance far beyond that of columns packed with 5µm, 4µm or even 3µm fully porous particles. Very high separation efficiencies using standard HPLC instruments and conditions provide increased peak resolution and lower limits of detection. An ultra-stable packed bed results in exceptionally robust columns that demonstrate excellent retention and response reproducibility.


4µm Solid Core Particles for all Users

The 4µm solid core particles used in Accucore XL HPLC columns have been specifically designed to get the optimum chromatographic performance from conventional HPLC instruments.

- Very high efficiencies
- Little decrease in efficiency as flow rate is increased
- Moderate backpressures

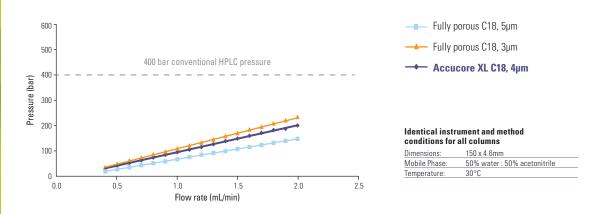
Efficiency

Accucore XL HPLC columns generate higher efficiencies than columns packed with 5µm and 3µm fully porous material – as shown in the van Deemter curve below.

▲ Fully porous C18, 3µm
 ♦ Accucore XL C18, 4µm

Fully porous C18, 5µm

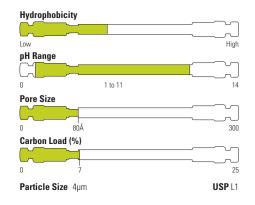
Identical instrument and method conditions for all columns


Dimensions:	150 x 4.6mm
Mobile Phase:	50% water: 50% acetonitrile
Temperature:	30°C
Injection Volume:	1µL
Detection:	UV at 254nm (0.1s rise time, 20 Hz)
Sample:	o-xylene

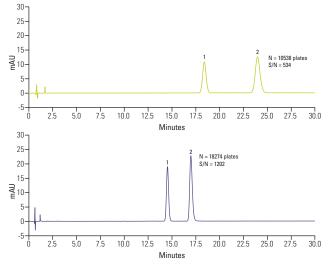
- 75% higher efficiency than 5µm fully porous
- 50% higher efficiency than 3µm fully porous

Backpressure

Accucore XL HPLC columns generate reasonable backpressures, moderately higher than fully porous 5µm and lower than fully porous 3µm, that are compatible with conventional HPLC instruments.



- Backpressures between those generated by 3µm and 5µm fully porous particles
- Within conventional HPLC instrumentation pressure limit even at high flow rates


Accucore XL C18

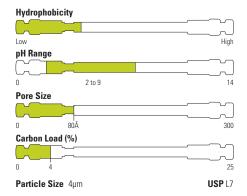
- Optimum retention of non-polar compounds
- Hydrophobic interaction mechanism
- Separates a broad range of analytes

The carbon loading of Accucore XL C18 provides high retention of non-polar analytes via a predominantly hydrophobic interaction mechanism. The highly retentive nature of the phase means that it can be used to separate a broad range of analytes.

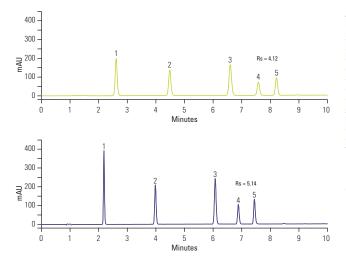
Ibuprofen and Valerophenone (USP)

Accucore XL C18 4µm, 150 x 4.6mm	•
Fully porous C18 5µm, 150 x 4.6mm	

Mobile phase:	66.3:33.7 (v/v) water with
	phosphoric acid, pH 2.5:methanol
Flow rate:	2mL/min
Temperature:	30°C
Detection:	UV at 214nm
Injection volume:	5µL
Analytes:	1. Valerophenone
	2. Ibuprofen


- 73% higher efficiency
- 125% higher sensitivity

Thermo Scientific Chromatography Columns and Consumables 2014-2015


Accucore XL C8

- Similar selectivity to C18 with lower retention
- · Recommended for analytes with moderate hydrophobicity

Accucore XL C8 offers lower hydrophobic retention than columns packed with longer alkyl chain length material, such as C18. It is then therefore recommended for analytes with moderate hydrophobicity, or when a less hydrophobic phase provides optimum retention.

Endocrine Disruptors

- 31% better resolution of critical pair
- 37% narrower peaks
- 226% higher sensitivity

Accucore XL C8 4µm, 150 x 4.6mm Fully porous C8 5µm, 150 x 4.6mm

Fully porous C8 5µm, 150 x 4.6mm					
water					
acetonitrile					
Time (min)	% B				
0.0	25				
20.0	70				
20.1	75				
25.0	25				
1.5mL/min					
25°C					
UV at 220n	m				
5µL					
1. Desethyl	Atrazine				
2. Simazin	е				
3. Atrazine					
4. Diuron					
5. Bisphen	ol A				
	water acetonitrik Time (min) 0.0 20.0 20.1 25.0 1.5mL/min 25°C UV at 220n 5µL 1. Desethyl 2. Simazin 3. Atrazine 4. Diuron				

Accucore Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	RP-MS	C18	C8	aQ
2.6	Defender Guard	10	2.1	17626-012105	17126-012105	17226-012105	17326-012105
	(4/pk)		3.0	17626-013005	17126-013005	17226-013005	17326-013005
			4.6	17626-014005	17126-014005	17226-014005	17326-014005
	HPLC Column	30	2.1	17626-032130	17126-032130	17226-032130	17326-032130
		50	2.1	17626-052130	17126-052130	17226-052130	17326-052130
			3.0	17626-053030	17126-053030	17226-053030	17326-053030
			4.6	17626-054630	17126-054630	17226-054630	17326-054630
		100	2.1	17626-102130	17126-102130	17226-102130	17326-102130
			3.0	17626-103030	17126-103030	17226-103030	17326-103030
			4.6	17626-104630	17126-104630	17226-104630	17326-104630
		150	2.1	17626-152130	17126-152130	17226-152130	17326-152130
			3.0	17626-153030	17126-153030	17226-153030	17326-153030
			4.6	17626-154630	17126-154630	17226-154630	17326-154630
		250	2.1	-	-	-	-

.....

Particle Size (µm)	Format	Length (mm)	ID (mm)	C18	C8
4	Drop-in Guard (4/pk)	10	2.1	74104-012101	74204-012101
			3.0	74104-013001	74204-013001
			4.6	74104-014001	74204-014001
	HPLC Column	50	2.1	74104-052130	74204-052130
		·	3.0	74104-053030	74204-053030
			4.6	74104-054630	74204-054630
		100	2.1	74104-102130	74204-102130
		·	3.0	74104-103030	74204-103030
			4.6	74104-104630	74204-104630
		150	2.1	74104-152130	74204-152130
		·	3.0	74104-153030	74204-153030
		·	4.6	74104-154630	74204-154630
		250	2.1	74104-252130	74204-252130
			3.0	74104-253030	74204-253030
			4.6	74104-254630	74204-254630

\bigcirc
()
\bigcirc
\cap
$\underline{\bigcirc}$
\leq
\square
\supset
S
CD
ō
>
\mathcal{P}
0
\mathbf{S}
O_{-}
Ť.
2
\mathcal{O}
()
×
\cup
至.
(D
ഹ
\mathbf{V}
\mathbf{v}
∇
\Box
0
C
=
2
đ.
4
\sim
ੜ_
0
<
₫.
C
വ

Polar Premium	Phenyl-Hexyl	Phenyl-X	PFP	C30	HILIC	Urea-HILIC
28026-012105	17926-012105	27926-012105	17426-012105	27826-012105	17526-012105	27726-012105
 -	17926-013005	-	17426-013005	-	17526-013005	-
 -	17926-014005	-	17426-014005	-	17526-014005	-
-	17926-032130	-	17426-032130	-	17526-032130	-
 28026-052130	17926-052130	27926-052130	17426-052130	27826-052130	17526-052130	27726-052130
 28026-053030	17926-053030	27926-053030	17426-053030	27826-053030	17526-053030	27726-053030
 28026-054630	17926-054630	27926-054630	17426-054630	27826-054630	17526-054630	27726-054630
 28026-102130	17926-102130	27926-102130	17426-102130	27826-102130	17526-102130	27726-102130
28026-103030	17926-103030	27926-103030	17426-103030	27826-103030	17526-103030	27726-103030
28026-104630	17926-104630	27926-104630	17426-104630	27826-104630	17526-104630	27726-104630
28026-152130	17926-152130	27926-152130	17426-152130	27826-152130	17526-152130	27726-152130
 28026-153030	17926-153030	27926-153030	17426-153030	27826-153030	17526-153030	27726-153030
 28026-154630	17926-154630	27926-154630	17426-154630	27826-154630	17526-154630	27726-154630
 28026-252130	_	27926-252130	_	27826-252130	_	27726-252130

Format	Length (mm)	ID (mm)	Cat. No.
	10	2.1	852-00
UNIGUARD Guard Cartridge Holder		3.0	852-00
		4.6	850-00

Particle Size (µm)	Length (mm)	ID (mm)	Format	Validation	Narrow Selectivity	Wide Selectivity	Polar Selectivity
2.6	50	2.1	3-column Kit	17126-052130-3V		17X26-052130-3VB	
	100			17126-102130-3V		17X26-102130-3VB	
	150			17126-152130-3V		17X26-152130-3VB	
			Kit contains	C18	C18	C18	aQ
				C18	RP-MS	Phenyl-Hexyl	PFP
				C18	aQ	PFP	HILIC

Thermo Scientific Acclaim HPLC Columns

Optimal selectivity through innovative chemistry

- · Novel and proprietary surface chemistries for diversified selectivities
- Ultrapure, porous, spherical silica
- High efficiencies
- · Low silanol activity for good basic analyte peak shapes
- Reproducible and reliable manufacturing process

Thermo Scientific[™] Acclaim[™] columns are based on high-purity, porous silica particles, with advanced and innovative column bonding technologies. This provides complementary selectivity, high column efficiencies, and symmetrical peaks. Acclaim columns meet the high standards set by modern HPLC and LC-MS methods and are used in applications such as pharmaceutical, environmental, food and beverage, chemical, and consumer products. General reversed-phase, HILIC and Specialty phases are available. Acclaim RSLC columns, with a particle size of 2.2µm, are designed for use with UHPLC systems.

Reliability and Durability

Quality and reliability are essential to a successful analysis. The Acclaim columns are thoroughly tested individually, so that chromatographers can have full confidence in them. Manufacturing starts with an ultrapure silica substrate, using only carefully selected lots with narrow ranges of physical parameters. By design, the bonding processes are clean and repeatable with no unexpected changes in performance. Each batch of bonded silica receives a full suite of validation tests appropriate to its intended use. The bonded silica is packed in precision-polished 316 stainless steel hardware using highly reliable processes. Each packed column is tested to ensure the same great performance every time.

The quality assurance reports for silica lot validation and column performance explain the test protocols, list the specifications, and show the actual chromatograms.

Performance Indicators

Acclaim columns have been designed to meet the high quality standard needed in laboratories today. The innovative surface chemistries deliver exceptional peak efficiencies for a broad range of analytes. To ensure optimal performance, all Acclaim products are thoroughly characterized using a number of performance indicators, including surface coverage of the bonded phase, metal contamination, steric selectivity, column polarity, column hydrophobicity, and low silanol activity for bases. The specialty columns are also application-tested for their specific analysis, to ensure that each lot of bonded silica provides high-performance separations.

Reversed-phase Columns

Acclaim 120 C18: High-density, monolayer C18 reversed-phase columns for exceptional resolution in a variety of applications.

Acclaim 120 C8: High-density monolayer C8 reversed-phase column.

Acclaim Phenyl-1: A unique reversed-phase column for the superior separation of aromatic compounds with enhanced hydrolytic stability.

Acclaim C30: Designed to provide high shape selectivity for separation of hydrophobic structurally related isomers.

Acclaim PolarAdvantage: Sulfonamideembedded column for separating a wide variety of analytes.

Acclaim PolarAdvantage II: Amideembedded reversed-phase columns with enhanced hydrolytic stability.

Size-exclusion Columns

Acclaim SEC Columns: Polymeric columns designed for separating water soluble polymers and oligomers in the MW range of 100 to 1,000,000 Daltons.

Hydrophilic Interaction Columns

Acclaim HILIC-10: Designed for separating hydrophilic compounds

Acclaim Trinity P1 and P2 columns:

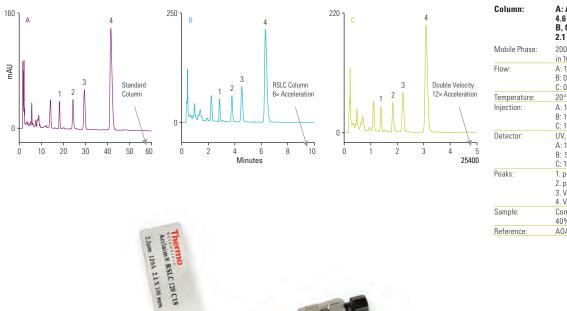
Unique trimodal surface chemistry provides simultaneous reversed-phase, anion and cation exchange capability for unparalleled chromatographic performance and maximum flexibility in adjusting selectivity (see Specialty Columns).

Mixed-Mode Columns

Mixed-mode columns provide a unique, adjustable selectivity tool, using variation in pH, ionic strength, or organic modifier to influence the separation selectivity of acids, bases, zwitterions and neutral molecules.

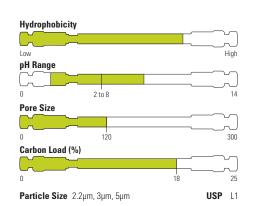
Acclaim Mixed-Mode HILIC-1: Combines both reversed-phase and hydrophilic interaction liquid chromatography (HILIC) properties.

Acclaim Mixed-Mode WAX-1: High-density monolayer that incorporates both reversedphase and weak anion exchange properties.


Acclaim Mixed-Mode WCX-1: Reversed-phase and cation exchange combined in a single column.

Acclaim 120 C18

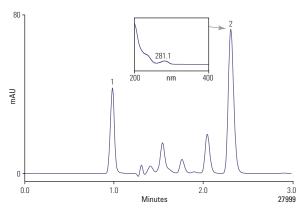
High performance reversed-phase columns for reproducible results


- High hydrophobic retention
- Excellent efficiencies for maximum resolution
- · Low silanol activity for excellent peak shapes for basic analytes
- Reproducible manufacturing practices for reproducible column-to-column performance
- Extremely low bleed, fully compatible with MS
- Available in 2.2, 3 and 5µm particle size

The Acclaim 120 columns are for high resolution reversed-phase separations. The very high surface coverage and very low metal content together result in columns with excellent efficiencies. These columns provide exceptional performance for a variety of applications in the pharmaceutical, chemical, environmental, and food separations areas.

- to the

olumn:	A: Acclaim 120 C18, 5µm, 4.6 × 150mm B, C: Acclaim RSLC C18, .2µm, 2.1 × 50mm
lobile Phase:	200mM HOAc in 10% (v/v) MeOH
ow:	A: 1.00mL/min B: 0.41mL/min C: 0.82mL/min
emperature:	20°C
jection:	A: 10µL B: 1.2µL C: 1.2µL
etector:	UV, 254 nm, A: 1 Hz data rate B: 5 Hz data rate C: 10 Hz data rate
eaks:	1. p-Hydroxybenzoic acid 2. p-Hydroxybenzaldehyde 3. Vanillic acid 4. Vanillin
ample:	Commercial vanilla extract in 40% ethanol, filtered
eference:	AOAC Official Method 990.25


Acclaim 120 C8

High performance reversed-phase columns with intermediate hydrophobic retention

- Low silanol activity for excellent peak shapes for basic analytes
- Excellent column efficiencies
- LC-MS compatible
- Reproducible manufacturing practices for reproducible column-to-column performance
- Available in 2.2, 3 and 5µm particle size

Acclaim 120 C8 reversed-phase columns feature densely bonded monolayer C8 ligands on a high-purity, spherical porous silica substrate. The columns are a well-characterized line of LC/MS compatible C8 phases with very high surface coverage and extremely low silanol activity. These columns provide exceptional performance for a variety of applications in the pharmaceutical, environmental, food and many other industrial sectors.

Triclosan in toothpaste

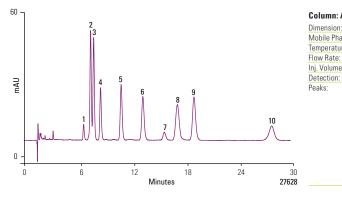
Column:	Acclaim RSLC C8, 2.2µm
Dimension:	2.1 × 100mm
HPLC System:	UltiMate 3000 RSLC
Buffer:	2mM Ammonium acetate pH 5
Mobile Phase:	Isocratic, 15% buffer, 85% methanol (v/v)
Flow Rate:	0.200mL/min
Inj. Volume:	1.0µL
Temperature:	50°C
Detection:	Diode array detector, 281nm, 10Hz, 0.1 s resp. time and spectra 200–400 nm
Samples:	Toothpaste containing 0.3% triclosar
Preparation: mL magnesium sulf Sonicate and filter.	1.0g Toothpaste + 1.0mL of 7.5mg/ ate + methanol to make 25mL.
Peaks:	1. Saccharin 2. Triclosan

Hydrophobicity High Low pH Range 2 to 8 14 0 Pore Size 120 0 300 Carbon Load (%) 11 25 0 Particle Size 2.2µm, 3µm, 5µm USP L7

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Acclaim Phenyl-1

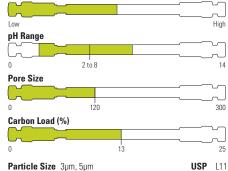
A unique reversed-phase column with high aromatic selectivity


- High aromatic selectivity
- High hydrophobic retention
- Unique and complementary selectivity compared to any other phenyl type column
- Compatibility with highly aqueous mobile phase
- High efficiency and rugged packing

Acclaim Phenyl-1 columns provide unique selectivity of aromatic compounds for superior chromatographic performance.

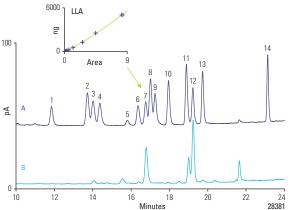
This column has a higher π - π interaction than other phenyl phases and provides unique selectivity for aromatic compounds while maintaining sufficient hydrophobic interaction and aqueous compatibility for superior chromatographic performance.

The Acclaim Phenyl-1 column can be used in a wide range of applications in pharmaceutical, environmental, food testing and product-quality testing. This column is ideally suited for the analysis of aromatic analytes; some examples include glucocorticosteroids, estrogens, fat-soluble vitamins and phospholipids.

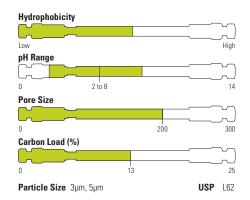

Separation of fat-soluble vitamins

Column: Acclaim Phenyl-1, 3µm 3 × 150mm Methanol/water v/v 90/10 Mobile Phase 30°C Temperature: 0.5ml /mir 2µL UV at 220nm (100 ppm each) 1. Retinol acetate (vitamin A acetate) 2. Vitamin D2 3. Vitamin D3 4. delta-Tocopherol 5. gamma-Tocopherol 6. alpha-Tocopherol (vitamin E) 7. Impurity (unknown) 8. Vitamin E acetate 9. Vitamin K2

Hydrophobicity


Acclaim C30

Columns for separating structurally related isomers


- High shape selectivity
- Unique selectivity complementary to other reversed-phase columns
- Compatibility with highly aqueous mobile phase
- High-quality: low column bleed, high efficiency and rugged packing

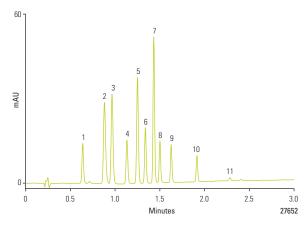
The Acclaim C30 is designed to provide high shape selectivity for separating hydrophobic structural related isomers and unique selectivity complementary to other reversed-phase columns (e.g. C18).

Omega fatty acids

LC System:	UltiMate 3	000 RS	6, Dual Gradient				
Mobile Phases:	A. Water:formic acid:mobile phase B 900:3.6:100 (v/v)						
	B. Acetone: 675:225:10		itrile:THF:formic acid				
Gradient:	Time (min)		%B				
	0	100	0				
	1	40	60				
	13	30	70				
	22	5	95				
	24	5	95				
	29	100	0				
	32	100	0				
Flow Rate:	1.00mL/mi	n					
Temperature:	30°C						
Inj. Volume:	2µL						
Detection:	Corona ultr	a, nebu	llizer 15°C, filter high				
Samples:	A. Standar B. Saponifi						
Peaks:	1. SDA	eu enne	Konitat				
i cuka.	2. FPA						
	3. ALA						
	4. GLA						
	5. DHA						
	6. Arach.						
	7. LLA						

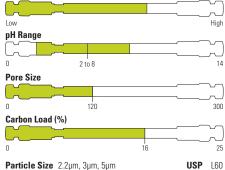
4-064

Acclaim PolarAdvantage


Novel polar-embedded reversed-phase columns with unique selectivity

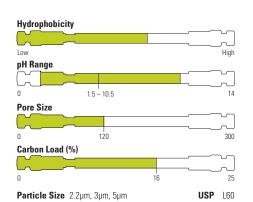
- Selectivity complementary to the C18 column
- Low silanol activity for excellent peak shape with basic compounds
- Compatible with 100% aqueous mobile phase
- High selectivity for hydrophobic aromatic molecules
- Wide range of applications
- Available in 2.2, 3 and 5µm

Acclaim PolarAdvantage (PA) columns feature a patented bonding column chemistry that incorporates a polar sulfonamide group with an ether linkage near the silica surface. This unique chemistry provides low silanol activity, compatibility with 100% aqueous mobile phase. The Acclaim PA column offers great separation power to resolve a wide variety of polar and nonpolar analytes and supports LC/MS analysis.


Acclaim PA columns provide unique selectivity, good peak shape for acidic, basic, and neutral analytes, and full compatibility with 100% aqueous conditions. Applications include pharmaceutical, environmental, life science, food testing, and product-quality testing.

EPA 604 phenols

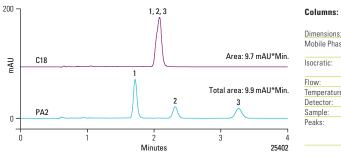
Column: Acclaim		C Po	lar/	\dva	ntag	je, 2.2µm
Dimensions: 3 × 50						
System: UltiMate 3						
Mobile Phases:	A: 10mM formic acid + 10mM					
					ate, p	H 3.75 ± 0.05
	B: Ace					
Gradient Time (min):				0.3		
	%A					
	%B :			30	90	90
Flow Rate:	1.25m	ıL/m	in			
Temperature:	30°C					
Injection Volume:	0.5µL					
Detection:	UV at	280	nm,	10Hz	, 0.5	s resp. time
Sample:	Calibr	ratio	n mi:	x, 50	µg/m	IL in water
Peaks:	1. Phe	enol				
	2.2,4	-Din	itrop	henc	bl	
	3.4-N	litro	pher	loi		
	4.2-C	hlor	ophe	enol		
	5. 2-N	litro	pher	ol		
	6.2,4	-Din	nethy	/lphe	nol	
	7.4,6					
	8.4-C					enol
	9.2,4	-Dic	hloro	pher	nol	
	10. 2,					ol
	11. Pe	nta	chlor	ophe	nol	



Particle Size 2.2µm, 3µm, 5µm

Acclaim PolarAdvantage II

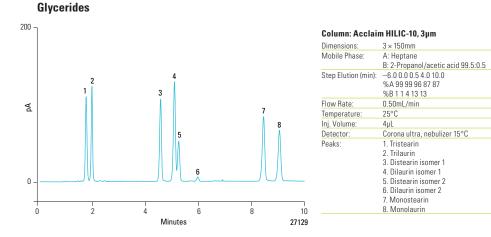
Complementary selectivity and enhanced hydrolytic stability


- Unique selectivity complementary to the C18 column
- Novel polar-embedded column chemistry for hydrolytic stability
- Compatible with 100% aqueous mobile phase
- Low bleed for MS compatibility
- Wide range of applications
- Available in 2.2, 3 and 5µm

Acclaim PolarAdvantage II (PA2) columns feature a patented surface chemistry that incorporates an amide-embedded polar group and multi-point attachment between the ligands and the silica surface. This unique chemistry provides enhanced hydrolytic stability from pH 1.5-10 with 100% aqueous mobile phases and exhibits high reversed-phase capacity, with selectivity complementary to conventional C18 columns.

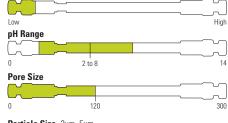
The Acclaim PA2 column is specifically designed to withstand high pH conditions, making it a good choice for the separation of both basic and acidic analytes.

Turmeric


Columns:	Acclaim RSLC 120 C18 Acclaim RSLC PA2
Dimensions:	2.2µm, 2.1 × 100mm
Mobile Phase:	A: 15mM H ₃ PO ₄ B: Methanol
Isocratic:	C18: 70% B (v/v) PA2: 80% B (v/v)
Flow:	0.41mL/min
Temperature:	30°C
Detector:	UV, 428nm
Sample:	Turmeric extract
Peaks:	1. Curcumin 2. Demethoxycurcumin 3. Bis-demethoxycurcumin

Acclaim HILIC-10

Designed with unique selectivity for hydrophilic molecules

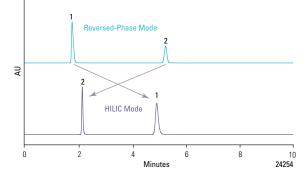

- Retains highly polar molecules that are not retained by reversed-phase chromatography
- Unique selectivity, complementary to reversed-phase columns
- Hydrolytically stable
- Rugged column packing
- Broad application range

The Acclaim HILIC-10 column is designed for separating highly hydrophilic molecules by Hydrophilic Interaction Liquid Chromatography (HILIC). This column is based on high-purity spherical porous silica covalently modified with a proprietary hydrophilic layer.

Hydrophobicity

Particle Size 3µm, 5µm

Acclaim Mixed-Mode HILIC-1

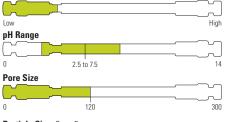

Uniquely designed for both reversed-phase and HILIC operations

- Can operate in both RP and HILIC modes
- Retains highly polar molecules
- Unique selectivity complementary to RP columns
- Broader application range compared with conventional diol-based columns
- High-efficiency column for high-resolution separations

The Acclaim Mixed-Mode HILIC-1 column features a unique, high-efficiency, silica-based HPLC mixed-mode stationary phase that combines both reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) properties. This combination allows both hydrophobic interaction and hydrophilic interaction to be utilized to optimize separations.

The Acclaim Mixed-Mode HILIC-1 stationary phase consists of a hydrophobic alkyl chain with a diol group at the terminus. The hydrophobic moiety provides reversed-phase retention and the terminal diol group facilitates hydrophilic interactions. This unique combination results in the adjustable selectivity, making Acclaim Mixed-Mode HILIC-1 separate mixtures that would be impossible for a C18 column. This column is suitable for a broad range of applications, including non-ionic ethoxylated surfactants, drug metabolites, lipids, polyethylene glycols (PEGs), ethoxylated surfactants, and more.

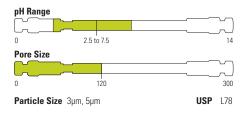
Cytosine and naphthalene



Column: Acclaim Mixed-Mode HILIC-1, 5µm

Dimensions:	4.6 × 150mm
Mobile Phase:	CH ₃ CN/0.1 M NH₄OAc, pH 5.2 v/v 52/48 for RP mode v/v 92/8 for HILIC mode
Temperature:	30°C
Flow Rate:	1mL/min
Inj. Volume:	10µL
Detection:	UV at 254nm
Peaks:	1. Cytosine (100 ppm) 2. Naphthalene (100 ppm)

Hydrophobicity

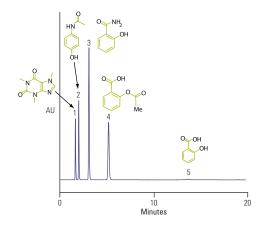


Particle Size 3µm, 5µm

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Acclaim Mixed-Mode WAX-1

Designed for separating anionic molecules; with powerful adjustable selectivity control

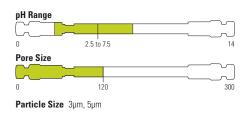


- Adjustable selectivity
- · Selectivity orthogonal to reversed-phase (RP) columns
- Ideal selectivity for anionic molecules
- Excellent column efficiency and peak asymmetry
- Multimode retention mechanisms: reversed-phase, weak anion exchange, and HILIC modes

The Acclaim Mixed-Mode WAX-1 is a novel, high-efficiency silica HPLC column that combines hydrophobic and weak anion exchange characteristics. Its unique chemistry results in a multimode separation mechanism that includes reversed-phase, anion exchange, and HILIC interactions. Selectivity can be adjusted by changing ionic strength, pH, or organic solvent content.

The Acclaim Mixed-Mode WAX-1 surface consists of a hydrophobic alkyl chain with a tertiary amine group at the terminus. The hydrophobic moiety provides reversed-phase retention and the terminal amino group facilitates electrostatic interactions.

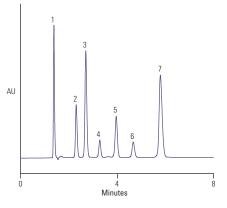
Pain relief medicine


4.6 × 150mm
40/60 v/v Acetonitrile/buffer
(6.8 g potassium monophosphate and
$0.5 \text{ g pyrophosphate in } 1000 \text{ g D.I. } H_2\text{O},$
pH is adjusted to 6.0 with NaOH)
30°C
1mL/min
1µL
UV, 220nm
1. Caffeine
2. Acetaminophen
3. Salicylamide
4. Acetyl salicylic acid (Aspirin)
5. Salicylic acid

Column: Acclaim Mixed-Mode WAX-1, 5µm

Acclaim Mixed-Mode WCX-1

Designed for separating cationic molecules with adjustable selectivity control



- Adjustable selectivity
- Ideal selectivity for separating basic molecules
- Selectivity complementary to C18 RP columns
- Multimode separation mechanism: reversed-phase, weak cation exchange, anion-exclusion and HILIC

The Acclaim Mixed-Mode WCX-1 is a novel, high-efficiency, silica-based column, manufactured by bonding a specially designed proprietary ligand with both hydrophobic and weak cation exchange properties. Selectivity of ionizable and neutral compounds can be controlled independently or simultaneously by tuning mobile phase ionic strength, pH or organic modifier. This column therefore can separate using multiple separation modes: reversed-phase, cation exchange, and normal-phase/ HILIC.

Basic compounds are important in a variety of industrial applications, including pharmaceutical, chemical, consumer products, foods and beverages, and more. The Acclaim Mixed-Mode WCX-1 not only retains basic molecules (from highly hydrophilic to highly hydrophobic), but also separates them with symmetrical peak shapes and excellent efficiency.

Pharmaceutical counterions

Column: Acclaim Mixed-Mode WCX-1, 5µm Dimension: 4.6 × 150mm

Mobile Phase:	40/60 v/v CH ₃ CN/NH ₄ OAc, pH 5.2 (20 mM total)
Temperature:	30°C
Flow Rate:	1mL/min
Inj. Volume:	5µL
Detection:	UV (225 nm)
Peaks:	1. Maleate 50µg/mL 2. Ketoprofen 30µg/mL 3. Naproxen 30µg/mL 4. Hydrocortisone 60µg/mL 5. Dexamethasone 60µg/mL 6. Oxprenolol 300µg/mL 7. Timolol 250µg/mL

Acclaim Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	120 C18	120 C8	PolarAdvantage	PolarAdvantage II
2.2	RSLC Column	30	2.1	071400	072614	072621	071402
			3.0	071606	072618	072625	071609
		50	2.1	068981	072615	072622	068989
			3.0	071605	072619	072626	071608
		75	3.0	075697	075696	075698	075699
		100	2.1	068982	072616	072623	068990
			3.0	071604	072620	072627	071607
		150	2.1	071399	072617	072624	071401
		250	2.1	074812	074811	074813	074814
}	HPLC Column	33	3.0	066272	-	066274	066276
		50	2.1	059128	059122	063174	077999
			3.0	068971	-	068972	068973
			4.6	059131	059125	-	063189
		75	3.0	066273	-	066275	066277
		100	2.1	059129	059123	061316	077998
			3.0	076186	076184	076214	078000
			4.6	059132	059126	076216	078001
		150	2.1	059130	059124	061317	063187
			3.0	063691	068970	063693	063705
			4.6	059133	059127	061318	063191
		250	2.1	076187	076185	076215	077997
			3.0	070077	070078	070079	070080
5	Guard Cartridge	10	2.1	069689	069688	069691	069692
			3.0	071981	071979	071983	071985
			4.6	069695	069696	069698	069699
	HPLC Column	50	2.1	059142	059134	-	-
			4.6	059146	059138	061319	-
		100	2.1	059143	059135	-	-
			4.6	059147	059139	-	-
		150	2.1	059144	059136	-	-
			4.6	059148	059140	061320	063197
		250	2.1	059145	059137	-	-
			4.6	059149	059141	061321	063199

Format	Cat. No.
Acclaim Guard Cartridge Holder	069580
Acclaim Guard Cartridge-Column Coupler	074188
Acclaim Guard Kit (Holder and Coupler)	069707

Acclaim Ordering Guide continued

Acclaim Phenyl-1 Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Phenyl-1
3	Guard Cartridge	10	2.1	079934
			3.0	071974
			4.6	071973
	HPLC Column	50	2.1	078016
			3.0	071972
			4.6	078018
		100	2.1	078015
			3.0	074693
			4.6	078017
		150	2.1	071971
			3.0	071970
			4.6	071969
		250	2.1	078014
			3.0	074694
5	HPLC Column	150	2.1	079698
			4.6	088016
		250	4.6	079697

Acclaim C30 Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	C30
3	HPLC Column	50	2.1	078666
			3.0	078663
			4.6	078661
		100	2.1	078665
			4.6	078660
		150	2.1	075725
			3.0	075724
			4.6	075723
		250	2.1	078664
			3.0	075726
5	Guard Cartridge	uard Cartridge 10	2.1	075722
			3.0	075721
			4.6	075720
	HPLC Column	150	4.6	075719
		250	4.6	075718

Acclaim HILIC-10 Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	HILIC-10
3	HPLC Column	150	2.1	074259
			3.0	074258
			4.6	074257
5	Guard Cartridge	10	2.1	074263
			3.0	074261
			4.6	074262

Acclaim Mixed-Mode Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	HILIC-1	WAX-1	WCX-1
3	HPLC Column	50	3.0	071912	071908	071910
		150	2.1	070091	070089	070093
			3.0	070090	070088	070092
5	Guard Cartridge	10	2.1	069694	069686	085455
			3.0	071913	071909	071911
			4.6	069706	069704	069705
	HPLC Column	150	2.1	066847	067084	068371
			4.6	066843	064984	068353
		250	4.6	066844	064985	068352

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Notes	6
	Co
	umr
	ns ar
	nd A
	olumns and Accessories
	SSO
	$\stackrel{\vee}{\lor}$
	Colum
	ins for
	Columns for Analytical LC
	tical L(

Thermo Scientific Syncronis HPLC Columns

Consistent Reproducible Separations, Column after Column, Time after Time. Extensive testing and strong quality control procedures ensure the consistency of Syncronis HPLC columns – column after column.

- Thermo Scientific[™] Syncronis[™] HPLC columns are manufactured, packed and tested in ISO9000 accredited facilities. Each lot of silica is tested for the physical properties of the silica support and only released for production if it meets the stringent test specifications.
- Syncronis columns are based on highly pure 100Å silica, with a surface area of 320m²/g, compared to 200m²/g for typical silica based material. This greater surface area ensures good retention of analytes having a range of hydrophobicity, away from the solvent front.
- Available in three particle sizes: 1.7µm for rapid UHPLC separations plus 3µm and 5µm for the more traditional HPLC analysis.
- Syncronis reversed phase columns are densely bonded and double endcapped to minimize the number of residual silanols available to interact with basic analytes.
- Each batch of chromatographic media packed into Syncronis columns is put through a series of diagnostic chromatographic tests, based on those developed by Tanaka¹ to ensure consistent, predictable separations.

These tests rigorously probe interactions between analytes and the stationary phase, measuring hydrophobicity, shape selectivity and secondary interactions with bases, acids and chelators.

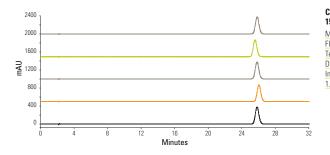
 Enhanced, automated packing methods drive consistency even further and every column is individually tested to ensure that it meets the required quality.

View product information and application notes

For full details on the Syncronis column range, please request or view a copy of our Syncronis technical guide www.thermoscientific.com/syncronis

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Syncronis C18


Syncronis C18 columns deliver consistent predictable separations, column after column, time after time

- Highly pure, high surface area silica
- High carbon load for increased retention
- Double endcapped for extra surface coverage
- Highly inert towards basic compounds
- Rigorously tested to ensure quality

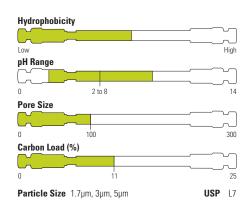
When developing a new method, one of the most important goals for the chromatographer is to achieve a consistent, reproducible separation. The selection of a highly reproducible HPLC column is essential to attaining this goal.

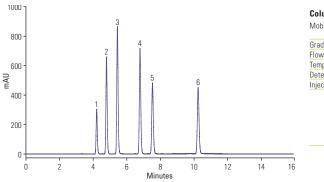
Syncronis C18 columns show excellent column to column reproducibility, as illustrated here by the analysis of zidovudine using five separate columns. The reproducibility in terms of retention time and peak area is less than or equal to 0.5%, column to column.


Ziovudine

0	lumn:	Sync	cronis	C18,	5µm,
50)mm x	4.6n	nm		

0011111 X 4.011111	
Nobile phase:	Water:Methanol (4:1)
low rate:	1.0mL min-1
Temperature:	25°C
Detection:	265nm
njection volume:	10µL
. Zidovudine	




Syncronis C8

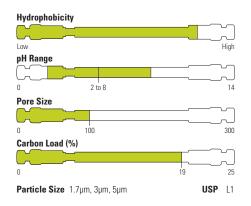
Reduces hydrophobic interactions allowing compounds to elute quicker from the column. Recommended for analytes with medium hydrophobicity or when a less hydrophobic phase is required to obtain optimum retention

- Highly pure, high surface area silica
- Less hydrophobic than Syncronis C18
- Double endcapped for extra surface coverage
- Rigorously tested to ensure quality

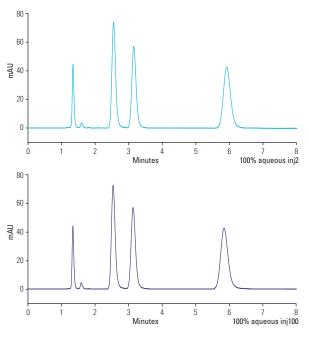
Uron herbicides

Column: Syncronis C8, 5µm, 150mm x 4.6mm

olumn: Syncroi	1is C8, 5µm, 150mm x 4.6mm			
obile phase:	A: Water			
	B: Acetonitrile			
radient:	35 to 60% B in 10 minutes			
ow rate:	1.0mL/min			
emperature:	30°C			
etection:	240nm			
jection volume.:	20µL			
	1. Tebuthiuron			
	2. Metoxuron			
	3. Monuron			
	4. Chlorotoluron			
	5. Diuron			
	6. Linuron			



Thermo Scientific Chromatography Columns and Consumables 2014-2015

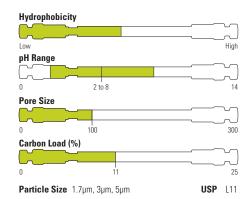

Syncronis aQ

Polar endcapped Syncronis aQ columns provide a controlled interaction mechanism that retains and resolves polar analytes. Stable in 100% aqueous mobile phase

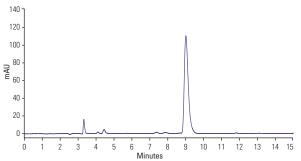
- Stable in 100% aqueous mobile phase
- Enhanced retention of polar compounds
- Rigorously tested to ensure quality

In comparison to a conventionally endcapped C18, the Syncronis aQ polar end-capped C18 stationary phase exhibits superior stability towards aqueous mobile phase. Syncronis aQ shows no degradation in performance after 100 injections in a buffered 100% aqueous eluent.

Stability of Syncronis aQ in 100% aqueous mobile phase


Column: Syncronis aQ, 5µm, 100mm x 4.6mm

Mobile phase:	50mM Aqueous K ₂ HPO ₄ (pH 6)				
Flow rate:	0.7mL/min				
Temperature:	30°C				
Detection:	260nm				
Injection volume:	2µL				
1. Cytidine-5'-diphosphate					
2. Adenosine-5'-triphosphate					
3. Adenosine-5'-diphosphate					
4. Adenosine-5'-monophosphate					


Syncronis Phenyl

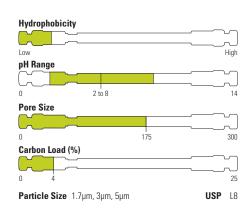
Provides an alternative to Syncronis C18 and is particularly useful for retention of aromatic compounds

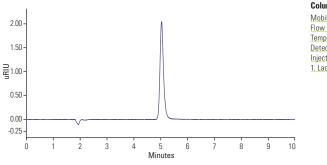
- Alternative selectivity to Syncronis C18
- Double endcapped for extra surface coverage
- Highly inert towards basic compounds
- Rigorously tested to ensure quality

Oxacillin sodium (USP)

Column: Syncronis Phenyl, 5µm, 300mm x 4.0mm

Mobile phase: Phosphate Buffer: MeCN:MeOH	
(70:30:10)	
Flow rate: 1.0mL/min (2mL/min in USP method)	
Temperature: 25°C	
Detection: 225nm	
Injection volume: 10µL	
1. Oxacillin Sodium (0.11mg/mL)	



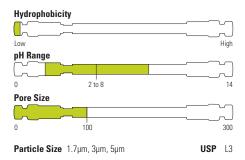

Syncronis Amino

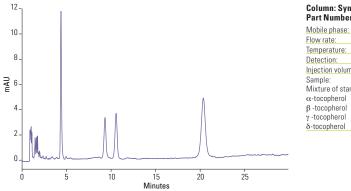
Provides a versatile aminopropyl phase that gives excellent chromatographic properties in four modes: weak anion exchange, reversed phase, normal phase and HILIC

- Highly pure, high surface area silica
- Double endcapped for extra surface coverage
- Rigorously tested to ensure quality

Lactulose

Column: Syncronis Amino 5µm, 150mm x 4.6mm


Mobile phase: Water: MeCN (30:70)
Flow rate: 1.0mL/min
Temperature: 35°C
Detection: RI
Injection volume: 5µL
1. Lactulose


Syncronis Silica

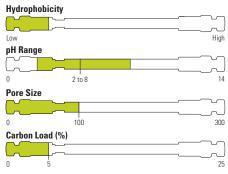
Tocopherols

Serves as a powerful and efficient tool for the chromatography of moderately polar organic compounds by normal phase chromatography

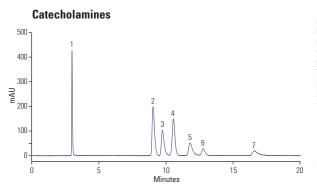
- Highly pure, high surface area silica
- Excellent reproducibility for normal phase chromatography
- Rigorously tested to ensure quality

Column: Syncronis Silica 5µm, 150 x 4.6mm Part Number: 97005-154630

Part Number: 97	005-154630
Mobile phase:	Hexane +0.2% propan-2-ol (IPA)
low rate:	2.0mL/min
Temperature:	40°C
Detection:	254nm
njection volume:	10µL
Sample:	
Mixture of standar	ds (200-1000 ug/ml) of the following:
x-tocopherol	
3 -tocopherol	
γ -tocopherol	
ð-tocopherol	



Thermo Scientific Chromatography Columns and Consumables 2014-2015


Syncronis HILIC

Provides enhanced retention of polar and hydrophilic analytes

- Alternative selectivity to Syncronis C18
- Improved sensitivity with MS detection
- No need for ion-pair or derivatisation
- Outstanding peak shape and sensitivity
- Highly pure, high surface area silica particles
- Neutral (uncharged), highly polar surface

Particle Size 1.7µm, 3µm, 5µm

Column: Syncronis HILIC, 5µm, 250 x 4.6mm

Fartivulliber. 57	Fait Number. 37303-234030				
Mobile phase: wate formate (10.5 : 84.5	r : acetonitrile : 200mM ammonium : 5)				
Flow rate:	1.0mL/min				
Temperature:	40°C				
Detection:	280nm				
Injection volume:	5µL				
Sample:	1. catechol 2. 5-HIAA 3. DOPAC 4. serotonin 5. tyrosine 6. dopamine 7. L-DOPA				

Syncronis Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	C18	C8	aQ	Phenyl
1.7	UHPLC Column	30	2.1	97102-032130	-	-	-
		50	2.1	97102-052130	97202-052130	97302-052130	97902-052130
			3.0	97102-053030	-	-	-
			4.6	97102-054630	97202-054630	97302-054630	97902-054630
		100	2.1	97102-102130	97202-102130	97302-102130	97902-102130
			3.0	97102-103030	97202-103030	97302-103030	97902-103030
3	HPLC Column	30	2.1	97103-032130			
		50	2.1	97103-052130	97203-052130	97303-052130	97903-052130
			3.0	97103-053030			
			4.6	97103-054630			
		100	2.1	97103-102130			
			3.0	97103-103030	97203-103030	97303-103030	-
			4.6	97103-104630	97203-104630	97303-104630	97903-104630
		150	2.1	97103-152130			
			4.6	97103-154630	97203-154630	97303-154630	97903-154630
5	Drop-in Guard (4/pk)	10	2.1	97105-012101	97205-012101	97305-012101	97905-012101
			3.0	97105-013001	97205-013001	97305-013001	97905-013001
			4.0/4.6	97105-014001	97205-014001	97305-014001	97905-014001
	HPLC Column	30	2.1	97105-032130	97205-032130	97305-032130	97905-032130
		50	2.1	97105-052130	97205-052130	97305-052130	97905-052130
			3.0	97105-053030	97205-053030	97305-053030	97905-053030
			4.6	97105-054630	97205-054630	97305-054630	97905-054630
		100	2.1	97105-102130	97205-102130	97305-102130	97905-102130
			3.0	97105-103030	97205-103030	97305-103030	97905-103030
			4.6	97105-104630	97205-104630	97305-104630	97905-104630
		150	2.1	97105-152130	97205-152130	97305-152130	97905-152130
			3.0	97105-153030	97205-153030	97305-153030	97905-153030
			4.0	97105-154030	97205-154030	97305-154030	97905-154030
			4.6	97105-154630	97205-154630	97305-154630	97905-154630
		250	2.1	97105-252130	-	-	-
			3.0	97105-253030	97205-253030	97305-253030	97905-253030
			4.0	97105-254030	97205-254030	97305-254030	97905-254030
			4.6	97105-254630	97205-254630	97305-254630	97905-254630

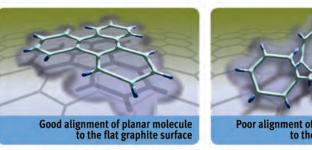
Format	Length (mm)	ID (mm)	Cat. No.
	10	2.1	852-00
UNIGUARD Guard Cartridge Holder		3.0	852-00
		4.0/4.6	850-00

Amino	Silica	HILIC
 _	-	-
 97702-052130	97002-052130	97502-052130
 _	-	-
 97702-054630	97002-054630	97502-054630
 97702-102130	97002-102130	97502-102130
97702-103030	97002-103030	97502-103030
 -	-	-
 97703-052130	97003-052130	97503-052130
 _	-	-
 -	-	-
 _	-	-
 -	-	-
 97703-104630	97003-104630	97503-104630
 _	-	97503-152130
97703-154630	97003-154630	97503-154630
 97705-012101	97005-012101	97505-012101
 97705-013001	97005-013001	97505-013001
 97705-014001	97005-014001	97505-014001
 97705-032130	97005-032130	97505-032130
 97705-052130	97005-052130	97505-052130
 97705-053030	97005-053030	97505-053030
 97705-054630	97005-054630	97505-054630
 97705-102130	97005-102130	97505-102130
 97705-103030	97005-103030	97505-103030
 97705-104630	97005-104630	97505-104630
 97705-152130	97005-152130	97505-152130
 97705-153030	97005-153030	97505-153030
 97705-154030	97005-154030	97505-154030
 97705-154630	97005-154630	97505-154630
 _	_	_
 97705-253030	97005-253030	97505-253030
 97705-254030	97005-254030	97505-254030
97705-254630	97005-254630	97505-254630

Thermo Scientific Hypercarb HPLC Columns

100% porous graphitic carbon for extended separation capabilities

- Exceptional retention of very polar analytes
- Separates structurally related substances
- pH stable from 0 to 14
- Ideal for high temperature applications

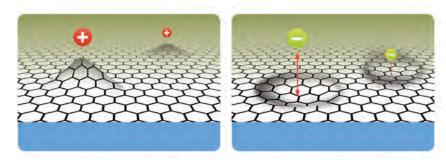

Porous Graphitic Carbon (PGC) is a unique stationary phase composed of flat sheets of hexagonally arranged carbon atoms with a satisfied valence, as in a very large polynuclear aromatic molecule. Thermo Scientific[™] Hypercarb[™] columns are unlike traditional silica bonded phases in both its structure and retentive properties, allowing for total pH stability and the retention and separation of highly polar species. Hypercarb columns are ideally suited to solve "problem" separations, in both reversed phase and normal phase HPLC and LC/MS applications.

Retention and Resolution

The mechanism of interaction is very dependent upon both the polarity and planarity (shape) of the solute. These specific interaction mechanisms allow the successful retention and resolution of analytes that cannot be separated by typical reversed phase HPLC. Removal of complex buffering systems or ion-pair reagents, and use of increased organic modifier concentration for polar analytes allows greater compatibility with detection techniques such as MS.

The overall retention on Hypercarb columns is a combination of two mechanisms:

1) Adsorption: The strength of analyte interactions with Hypercarb columns is largely dependent on the molecular area in contact with the graphite surface, and also on the type and positioning of the functional groups in relation to the graphite surface at the points of contact. The approach of a planar and a non-planar molecule to the Hypercarb surface is shown in the diagrams above. The strength of the interaction depends upon the size and orientation of the molecular area that is able to come in contact with the flat graphite surface. More planar molecules will show more retention than rigid molecules with a 3-dimensional spatial arrangement.


Low High pH Range 0 14 Pore Size Carbon Load (%) 0 10

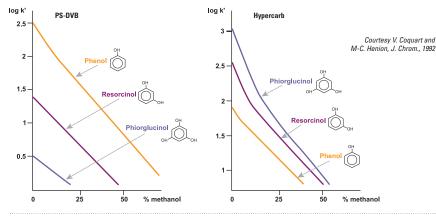
Particle Size 3µm, 5µm, 7µm

Hydrophobicity

Poor alignment of non-planar molecule to the flat graphite surface

Schematic representation of molecular area of a planar and non-planar molecule interacting with the Hypercarb surface

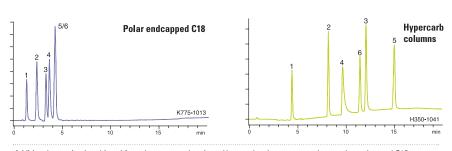
Schematic representation of a point charge approaching the Hypercarb surface


2) Charge induced interactions of a polar analyte with the polarizable surface of graphite: The second mechanism,

or graphite: The second mechanism, charge-induced dipole, is illustrated above and accounts for the strong retention exhibited by polar analytes. As the polar group with a permanent dipole approaches the surface, an induced dipole is formed, increasing the attraction between the analyte and graphite surface. These charges should not be confused with the overall ionic charge of the molecule, such as a basic compound ionized in acidic pH conditions. The charge-induced dipole mechanism is strictly due to the interaction of the electrostatic charge of the polar molecule with the graphite surface. The strong mechanisms of interaction with Hypercarb columns usually allows for shorter columns to be used during the method development process. In most cases, 100mm length columns or shorter are sufficient for a separation.

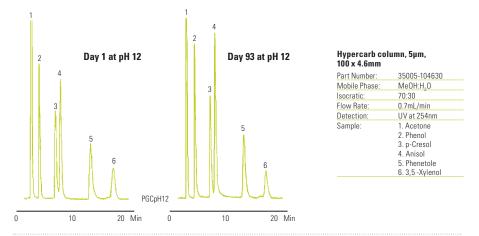
Thermo Scientific Chromatography Columns and Consumables 2014-2015

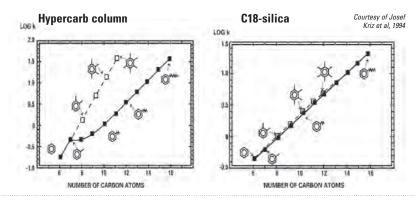
Increased Retention of Polar Analytes


In typical reversed phase chromatography, the retention of an analyte is directly related to its hydrophobicity: the more hydrophobic the analyte, the longer its retention. Conversely, as the polarity of the analyte increases, analyte-solvent interactions begin to dominate and retention is reduced. This observation holds true for the majority of reversed phase systems. An exception to this rule is Hypercarb columns, for which retention may in some cases increase as the polarity of the analyte increases, illustrated to the right. This phenomenon is referred to as the "polar retention effect on graphite" (PREG). This property makes Hypercarb columns particularly useful for the separation of highly polar compounds (with logP as low as -4) that are normally difficult to retain and resolve on silica-based alkyl chain phases. The retention of very polar solutes on Hypercarb columns can be achieved without ion pair reagents or complex mobile phase conditions, as illustrated in the chromatogram below.

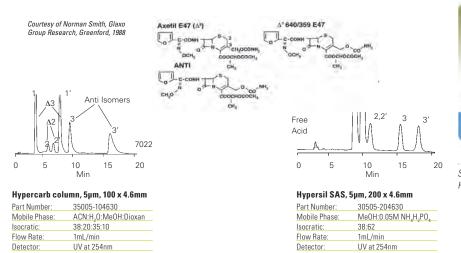
Retention on Hypercarb columns increases as polarity of the analyte increases, which is the opposite of typical reversed phase materials such as PS-DVB

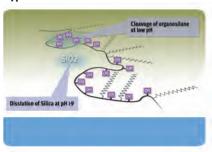
Extended pH Range

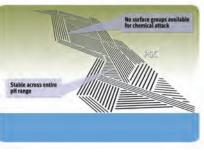

One of the other key benefits of Hypercarb columns is the extreme stability of the phase to chemical or physical attack. Due to the unique characteristics of the media, it can withstand chemical attack across the entire pH range of 0 to 14, allowing applications to be run at pH levels that are incompatible with typical silica-based columns. Hypercarb columns offer more choice in buffer selection while handling both high temperature and high pressure.


Hypercarb column, 5µm, 100 x 0.32mm Part Number: 35005-100365

Mobile Phase:	A: H ₂ O + 0.1% formic acid
	B: ACN + 0.1% formic acid
Gradient:	0 to 25% B in 15 minutes
Flow Rate:	8µL/min
Temperature:	25°C
Detection:	UV at 254nm
Analytes:	1. Cytosine
	2. Uracil
	3. Guanine
	4. Adenine
	5. Xanthine
	6. Thymine


Additional retention is achieved for polar compounds using a Hypercarb column compared to a polar endcapped C18. Note also the change in elution order.


Hypercarb column stability at pH 12: retention and selectivity do not change even after 93 days of storage in 0.1M NaOH/MeOH


Comparison of methyl and methylene group selectivity on C18 and Hypercarb columns

Typical C18 silica

Hypercarb

Surface comparison between C18 bonded silica and Hypercarb porous graphitic carbon

Separation of geometric isomers of Axetil: comparison of a Hypercarb and bonded silica column

Resolution of Structurally Related Compounds

By virtue of the nature of the surface and the way solute shape affects retention, Hypercarb columns can differentiate between closely related analytes such as isomers and homologous series. Where no discrimination between methylene and methyl groups is observed using a traditional C18 column, considerable resolving power is observed with Hypercarb columns, as shown above. The differentiation of analytes is based on their fit to the graphite surface, allowing for the chromatographic resolution of compounds that are very similar in structure as shown above with the resolution of diastereomers of the antibiotic Axetil. The Hypercarb column provides both a significant improvement in separation over the silica-based column originally used, as well as a change in elution order.

Ideal for Reversed Phase LC/MS of Polar Compounds

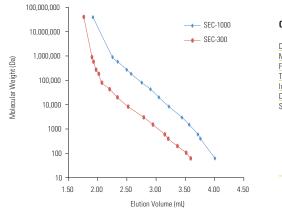
Reversed phase-LC/MS analysis of very polar compounds is challenging because the typical hydrophobic stationary phases when combined with the most suitable mobile phases for MS detection do not provide the necessary retention to resolve and quantify these compounds.

A Hypercarb column overcomes these challenges because it:

- Retains and separates very polar compounds using "MS friendly" mobile phases such as 0.1% formic or acetic acid and low concentrations of volatile buffers such as ammonium acetate or ammonium formate
- Can be used with high concentrations of organic modifiers in the mobile phase, which improves nebulization in atmospheric pressure ionization techniques, improving the sensitivity of the analysis.

- Allows shorter column lengths and smaller diameters to be used without compromising peak capacity, often with increased sensitivity. The flow rates used with narrowbore and capillary columns are more compatible with MS techniques.
- Is stable with any mobile phase and produces no phase bleed issues because the Hypercarb column's porous graphitic surface is not modified.

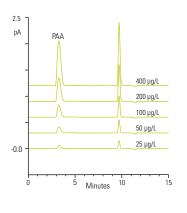
Hypercarb Ordering Guide

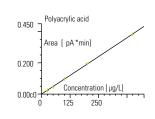

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
3	Drop-in Guard (4/pk)	10	1.0	35003-011001
			2.1	35003-012101
			3.0	35003-013001
			4.6	35003-014001
	HPLC Column	30	1.0	35003-031030
			2.1	35003-032130
			3.0	35003-033030
		50	1.0	35003-051030
			2.1	35003-052130
			<u>3.0</u> 4.6	35003-053030 35003-054630
		100	1.0	35003-101030
		100	2.1	35003-101030
			3.0	35003-103030
			4.6	35003-104630
		150	2.1	35003-152130
			3.0	35003-153030
			4.6	35003-154630
	High Temperature HPLC Column	30	2.1	35003-032146
		50	2.1	35003-052146
			4.6	35003-054646
		100	1.0	35003-101046
			2.1	35003-102146
			3.0	35003-103046
		10	4.6	35003-104646
5	Drop-in Guard (4/pk)	10	1.0	35005-011001
			<u>2.1</u> 3.0	35005-012101 35005-013001
			4.6	35005-013001
	HPLC Column	30	2.1	35005-032130
		00	3.0	35005-033030
			4.6	35005-034630
		50	1.0	35005-051030
			2.1	35005-052130
			3.0	35005-053030
			4.6	35005-054630
		100	1.0	35005-101030
			2.1	35005-102130
			3.0	35005-103030
		150	4.6	35005-104630
		150	<u> 1.0</u> 2.1	35005-151030 35005-152130
				35005-152130
			<u>3.0</u> 4.6	35005-154630
	High Temperature HPLC Column	30	2.1	35005-032146
	5		4.6	35005-034646
		50	2.1	35005-052146
			4.6	35005-054646
		100	2.1	35005-102146
			4.6	35005-104646
	Javelin HTS Column	20	2.1	35005-022135
	Preparative HPLC Column	100	10	35005-109070
			21.2	35005-109270
		150	30	35005-109370
		150	 21.2	35005-159070
			<u>∠1.</u> ∠	35005-159270
Format		Length (mm)	ID (mm)	Cat. No.
	Cartridge Holder			
UNIGUARD Guard (ai uiuye nuluei	10	1.0	851-00
			2.1	852-00
			3.0	852-00
			4.6	850-00

Acclaim Size Exclusion Chromatography (SEC)

High Performance SEC Columns for Analysis of Water Soluble Polymers

- Proprietary mono-dispersed multi-pore hydrophilic resin: no inflection points in calibration curve
- SEC-300 calibrated from 100 to 50,000 Daltons
- SEC-1000 calibrated from 1,000 to 1,000,000 Daltons
- Availability of small particle sizes packed in 4.6 x 300mm dimension allows for high-resolution analysis at reduced solvent consumption
- Stable surface bonding with low column bleed and compatibility with UV, RI, MS, ELSD and Thermo Scientific[™] Dionex[™] Corona[™] Charged Aerosol Detectors


Thermo Scientific[™] Acclaim[™] SEC-300 and SEC-1000 are a family of resin based, high performance size exclusion chromatography columns specifically designed for the separation of water soluble polymers and oligomers. Acclaim SEC columns are available in two sizes to cover a broad molecular weight range: 5µm, 300 Å for Acclaim SEC-300 and 7µm, 1000 Å for Acclaim SEC-1000.



Columns:	Acclaim SEC-300 Acclaim SEC-1000
Dimensions:	4.6 x 300mm
Mobile Phases:	10mM sodium perchlorate
Flow rate:	0.35mL/min
Temperature:	25°C
njection Volume:	50µL
Detection:	RI
Samples:	(0.03% - 0.1% in mobile phase) dextran (MW 5,000,000- 40,000,000), PEO (MW 895,000, 580,000, 272,000, 185,000, 80,000, 43,000, and 20,000), PEG (MW 8,300, 3,000, 1,500, 600, 400 and 200), diethylene glycol (MW 106 and ethylene glycol (MW 62)

Polyacrylic acid using size-exclusion chromatography with charged-aerosol detection

HPLC Conditions Column: Acclaim SEC-300				
Dimensions:	5µm, 4.6 x 300mm			
System:	UltiMate 3000 RS			
Mobile Phases:	A: Acetonitrile			
	B: Water			
Isocratic:	10:90			
Flow rate:	0.35mL/min			
Injection:	35µL			
Temperature:	30°C			
Detection:	Corona III; evaporator 55°C, Engine 40 °C, 2 Hz, filter 5, power function 1.20			
Peaks:	1. PAA standards in water			

Acclaim SEC Ordering Guide

Description	Particle Size (µm)	Format	Length (mm)	4.6 mm ID	7.8 mm ID
Acclaim SEC-300	5	Guard	33	082740	-
		HPLC Column	150	-	079726
			300	079723	079725
Acclaim SEC-1000	7	Guard	33	082739	-
		HPLC Column	150	-	079722
			300	079724	079721

Thermo Scientific Application Specific LC Columns

Innovative chemistries tailored for challenging and critically important applications

- Acclaim Trinity P1 and P2 for API and counterion analysis
- Acclaim Organic Acid for fast organic acid analysis
- Acclaim Surfactant and Surfactant Plus columns for separation of surfactants
- Acclaim Explosives for separation of explosive residues
- Acclaim Trinity Q1 for diquat and paraquat analysis
- Acclaim Carbamate for the separation of carbamate insecticides
- Acclaim Carbonyl C18 for aldehyde and ketone separation
- Hypersil Green PAH for polyaromatic hydrocarbon analysis

Thermo Scientific application specific columns are based on novel and unique chemistries and provide superior resolution with ease-of-use.

Acclaim Trinity P1 and P2

Application specific columns designed for the simultaneous separation of pharmaceutical drug substances and counterion analysis, as well as mixtures of acidic, basic, and neutral drugs.

Acclaim Organic Acid

Designed for separation of hydrophilic, aliphatic, and aromatic organic acids.

Acclaim Surfactant and Surfactant Plus

The most versatile commercially-available column specifically for the separation of all classes of surfactants.

Acclaim Explosives

Optimized column chemistry for baseline separation of all 14 explosives in EPA Method 8330, with complementary selectivity.

Acclaim Trinity Q1

Unique, high-efficiency, silica-based columns designed for the separation of the herbicides diquat and paraquat.

Acclaim Carbamate

A specifically column for the separation of carbamate pesticide specified in US EPA Method 531.2.

Acclaim Carbonyl C18

Designed for separating DNPH derivatives of aldehydes and ketones in air, water and soil using CARB Method 1004, EPA Method 554, EPA Method 8315 and related methods.

Hypersil Green PAH

Specially tailored alkyl bonded silica with a high carbon loading, designed specifically for the analysis of polyaromatic hydrocarbons (PAHs), specified in EPA Method 610.

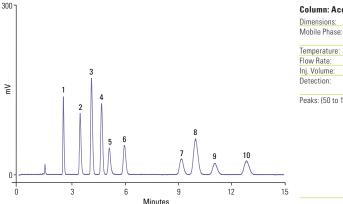
Acclaim Trinity P1

Most innovative advancement in mixed mode column technology: reverse-phase, anion- and cation exchange functionality on a single support

- Ideal selectivity for simultaneous separation of API and counterion
- Adjustable selectivity by mobile phase ionic strength, electrolyte type, pH, and organic solvent
- Low bleed; compatible with MS, CAD and ELSD.
- Retention of hydrophilic ionic and ionizable analytes without ion-pairing reagents
- Greater flexibility in method development: each retention mechanisms can be controlled independently

The Thermo Scientific[™] Acclaim[™] Trinity[™] P1 HPLC column is designed with unique multimode surface chemistry ideal for the simultaneous separation of drugs and their counterions. The surface chemistry concurrently provides reversed-phase, cation exchange, and anion exchange functionalities. The result is maximum flexibility in method development. Separations can be optimized easily by adjusting the chromatographic parameters (mobile phase pH, ionic strength, and organic strength).

The Acclaim Trinity P1 stationary phase, based on this Nanopolymer Silica Hybrid (NSH) technology, consists of high-purity porous, spherical 3µm silica particles, coated with charged nanopolymer beads. The unique surface chemistry includes an inner-pore area modified with an organic layer that provides both reversed phase and anion exchange properties. The outer-pore surface, conversely, is modified with cation exchange functionality.


Acclaim Trinity P1 Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.1mm ID	3.0mm ID
3	Guard Cartridges (2/pk)	10	071391	071390
	HPLC Column	50	075565	071388
		100	071389	071387
		150	075564	075563

Acclaim Guard Holder Ordering Guide

Format	Cat. No.
Acclaim SST Guard Cartridge Holder V-2	069580
Acclaim Guard Kit (Holder and coupler) V-2	069707
Guard to Analytical Column Coupler V-2	074188

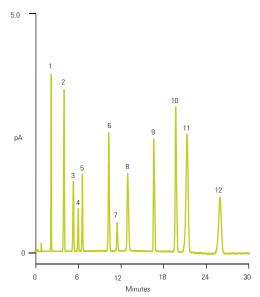
Simultaneous separation of pharmaceutical counterions

Column: Acclaim Trinity P1, 3µm

Column: Accla	aim Trinity P1, 3µm
Dimensions:	3.0 × 100mm
Mobile Phase:	60/40 v/v CH₃CN/20mM (total) NH₄OAc, pH 5
Temperature:	30°C
Flow Rate:	0.5mL/min
Inj. Volume:	2µL
Detection:	Corona ultra (Gain = 100 pA; Filter = med; Neb Temp = 30°C)
Peaks: (50 to 100	lppm)
	1. Choline
	2. Tromethamine
	3. Sodium
	4. Potassium
	5. Meglumine
	6. Mesylate
	7. Nitrate
	8. Chloride
	9. Bromide
	10. lodide

Acclaim Trinity P2

Most innovative mixed-mode column technology; hydrophilic interaction, HILIC, anion exchange and cation exchange functionalities


- Ideal for separating pharmaceutical counterions, including monovalent and divalent cations or anions
- Selectivity complementary to the Trinity P1 column
- \bullet Low column bleed, compatible with CAD and MS
- Hydrolytically stable
- High efficiency

The Acclaim Trinity P2 is a unique, high-efficiency, silica-based column specifically designed for separation of pharmaceutical counterions, including monovalent and divalent cations or anions.

The Acclaim Trinity P2 column is based on NSH technology, which consists of high-purity porous spherical silica particles coated with charged nanopolymer particles. The inner-pore area of the silica bead is modified with a covalently bonded organic layer that provides cation-exchange retention, while the outer surface is modified with anion-exchange nano-polymer beads. This chemistry ensures spatial separation of the anion-exchange and cation-exchange regions. Acclaim Trinity P2 column is aimed to complement Acclaim Trinity P1 to provide a total solution for pharmaceutical counter ion analysis by HPLC.

Pharmaceutical-related anions and cations

Column: Acclaim Trinity P2, 3µm

		1 11
Dimensions:	3.0	x 100 mm
Mobile phase		water and 100 mM NH40Fm, pH 5 gradient
Temperature	: 30°	С
Flow rate:	0.6	0 mL/min
Injection volu	ıme: 2µL	
Detection:	Cor	ona Veo Charged Aerosol Detector
Samples:	0.0	2 – 0.10 mg/mL each in D.I. water
Peaks:	2. 3 3. 1 4. 0 5. 1 6. 1 7. 1 8. 0 9. 1 10.	Phosphate Sodium Orlatssium Chloride Malate Bromide Vitrate Citrate Citrate Sulfate Magnesium Calcium
Time (min)	H ₂ 0	0.1 M Ammonium formate, pH3.65
-10	0.760	1.474
0	80	20
2	80	20
22	0	100
30	0	100

Acclaim Trinity P2 Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.1 mm ID	3.0 mm ID
3	Guard Cartridges (2/pk)	10	085435	085436
	HPLC Column	50	085431	085433
		100	085432	085434

Acclaim Guard Holder Ordering Guide

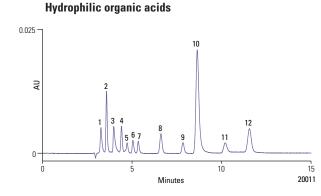
Format	Cat. No.
Acclaim Guard Cartridge Holder V-2	069580
Acclaim Guard Kit (Holder and coupler) V-2	069707
Guard to Analytical Column Coupler V-2	074188

Acclaim Organic Acid

Optimized and application-tested for the analysis of hydrophilic organic acids

- Use-tested to guarantee consistent hydrophilic organic acid separations
- Compatible with 100% aqueous mobile phases
- Hydrolytic stability at low-pH conditions
- Ideal selectivity for separating a wide spectrum of organic acids
- Excellent column efficiency and peak shapes for organic acids

The Acclaim Organic Acid (OA) is a silica-based reversed-phase column designed for high-efficiency, high-throughput organic acids analysis. It offers unparalleled performance for separating hydroxyl aliphatic and aromatic organic acids.


The Acclaim OA is the recommended column for determining small hydrophilic organic acids, C1 to C7 aliphatic acids, and hydrophilic aromatic acid and is also valuable for the analysis and quality assurance of food and beverage products, pharmaceutical preparations, plating baths, and manufacturing chemicals, chemical intermediates, and environmental samples.

Acclaim Organic Acid Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.1mm ID	3.0mm ID	4.0mm ID
3	HPLC Column	150	070087	070086	-
5	Guard Cartridges (2/pk)	10	-	071987	069700
	HPLC Column	150	-	-	062903
		250	-	-	062902

Acclaim Guard Holder Ordering Guide

Format	Cat. No.
Acclaim SST Guard Cartridge Holder V-2	069580
Acclaim Guard Kit (Holder and coupler) V-2	069707
Guard to Analytical Column Coupler V-2	074188

Column: Acclaim OA, 5µm, 4 × 250mm

Mobile phase:	100mM Na ₂ SO ₄ , pH 2.65 (adjusted with methanesulfonic acid)
Temperature:	30°C
Flow rate:	0.6mL/min
Injection volume:	5µL
Detection:	UV, 210nm
Peaks:	1. Oxalic acid 15mg/L (ppm)
	2. Tartaric acid 120
	3. Formic acid 180
	4. Malic acid 120
	5. iso-Citric acid 120
	6. Lactic acid 180
	7. Acetic acid 120
	8. Citric acid 120
	9. Succinic acid 120
	10. Fumaric acid 7
	11. cis-Aconitic acid *
	12. trans-Aconitic acid *

* 7ppm total for cis and trans isomers

Acclaim Surfactant

Excellent performance for separating a broad range of surfactants

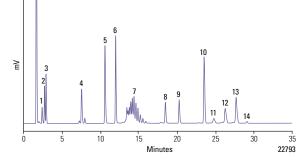
- Ideal selectivity for separation of anionic, nonionic, cationic and amphoteric surfactants
- Excellent peak shapes, especially for cationic surfactants
- Compatible with highly aqueous mobile phases
- Improved resolution for ethoxylated surfactants
- Rugged separations under a variety of conditions

The Acclaim Surfactant columns are the first generation high-efficiency, silica-based columns designed specifically for separating a wide variety of surfactants, including anionic, cationic, nonionic, and amphoteric surfactants using UV, ELSD or RI detection.

As a consequence of its novel chemistry, this column exhibits a unique polarity that provides significantly improved resolution for individual oligomers of ethoxylated surfactants compared with conventional C18 columns.

Acclaim Surfactant columns are also resistant to dewetting under highly aqueous mobile phase conditions, and thus can be used to provide excellent resolution between strongly hydrophilic compounds, such as isomers of xylene sulfonate.

Surfactants are widely used in industrial, agricultural, and pharmaceutical markets, in products as diverse as pesticides, detergents powders, petroleum products, cosmetics, and pharmaceuticals. The Acclaim Surfactant column was designed specifically for HPLC separation of these surfactants.


Acclaim Surfactant Ordering Guide

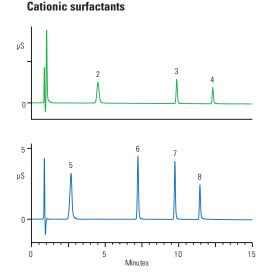
Particle Size (µm)	Format	Length (mm)	2.1mm ID	3.0mm ID	4.6mm ID
3	HPLC Column	150	070085	070084	-
5	Guard Cartridges (2/pk)	10	069693	071991	069701
	HPLC Column	150	068123	-	063201
		250	-	_	063203

Acclaim Guard Holder Ordering Guide

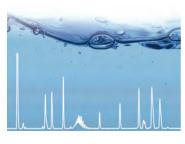
Description	Cat. No.
Acclaim SST Guard Cartridge Holder V-2	069580
Acclaim Guard Kit (Holder and coupler) V-2	069707
Guard to Analytical Column Coupler V-2	074188

Inorganic anion, hydrotropes, cationic, nonionic, amphoteric, and anionic surfactants

Column		Acclaim Surfactant, 5µm
Dimensio	ne.	4.6 × 150mm
Mobile P		(A) CH ₃ CN, (B) 0.1 M NH₄OAc, pH 5.4
Gradient		25% to 85% A in 25min, then hold 85% A for 10min
Tempera	ture:	30°C
Flow Rat	e:	1mL/min
Inj. Volun	ne:	25µL
Detection	n:	ELS detector
Peaks:	5. Laury 6. Laury 7. Triton 8. Cetyl 9. Decyl	de e sulfonate lpyridinium chloride ldimethylbenzyl-ammonium chloride X-100 sulfate scyl sulfate AS AS


Acclaim Surfactant Plus

Column of Choice for Surfactant Analysis using Higher Sensitivity Detection: Performance, Versatility, Throughput


- Ideal selectivity for simultaneous separation of anionic, nonionic, cationic, and amphoteric surfactants
- Compatible with multiple detectors including MS, CAD, ELSD and UV
- Well suited for the determination of cationic surfactants
- High efficiency and fast analysis
- Rugged separations under a variety of conditions

Acclaim Surfactant Plus is a new generation of columns offering improved performance and higher throughput for analyzing surfactants. They have similar selectivity to the Acclaim Surfactant columns, but have been designed with exceptionally low bleed for use with charged aerosol detectors (CAD) and mass spectrometers (MS). These columns can be used to separate a wide variety of surfactants including anionic, cationic, nonionic and amphoteric surfactants.

Additionally, these columns can be used with evaporative light scattering detectors (ELSD), suppressed conductivity detectors (SCD), and UV-Vis detectors (UV). They are resistant to dewetting under highly aqueous mobile phase conditions, and thus can be used to provide excellent resolution between strongly hydrophilic compounds, such as isomers of xylene sulfonate. Non-metallic PEEK hardware is available for best compatibility with Dionex ion chromatography systems.

Column	: Acclaim Surfactant Plus, 3µ				ıs, 3µn
Dimensio	ons:	3.0 × 150 mm			
System:		ICS 3000			
Mobile p	hases:	A: Acetonitrile B: 100mM Formic acid C: Water			
Gradient:		Time (min)	%A	%В	%С
		-12	5	5	90
		0	5	5	90
		12	40	5	55
		20	40	5	55
Flow Rat	e:	0.5 mL/mi	n		
Injection	:	5 µL			
Temperature:		25°C			
Detectio	n:	Conductiv	ity with I	olank sub	tractio
Suppres	Suppressor: CSRS300-2mm (external wa 1.0 mL/min, current = 8 mA)		iter		
Peaks:	2. Tetra 3. Tetra 4. Tetra 5. Decy 6. Dode 7. Tetra	etrabutylammonium fetrapentylammonium fetraheptylammonium Jecyl-trimethylammonium Jodecyl-trimethylammonium etradecyl-trimethylammonium łexadecyl-trimethylammonium			

_

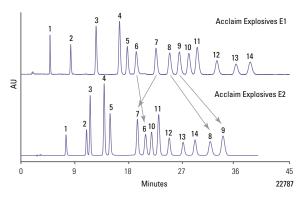
Acclaim Surfactant Plus Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.1mm	3.0 mm	4.6 mm	4.0 mm PEEK
3	HPLC Column	100	078955	078952	-	-
		150	078954	078951	078950	-
		250	078953	-	-	-
5	Guard Cartridges (2/pk)	10	078960	078959	082773	-
	HPLC Column	250	-	_	082767	-
		150	-	-	082768	078956

Acclaim Guard Holder Ordering Guide

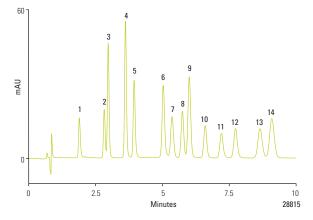
Description	Cat. No.
Acclaim SST Guard Cartridge Holder V-2	069580
Acclaim Guard Kit (Holder and coupler) V-2	069707
Guard to Analytical Column Coupler V-2	074188

Acclaim Explosives


The best solution for explosives analysis (EPA Method 8330)

- Both Acclaim E1 and E2 columns provide baseline resolution of all 14 compounds targeted by EPA Method 8330
- E2 columns available in 2.2, 3 and 5µm particle size
- The E1 and E2 columns have mutually complementary selectivity
- Simple isocratic elution conditions
- · Rugged columns with good lot-to-lot reproducibility

Acclaim Explosives E1 and E2 columns are specifically designed to resolve all 14 explosives listed in EPA SW-846 Method 8330: Nitroaromatics and Nitramines by HPLC. The novel and unique chemistries of these columns provide superior resolution with complementary selectivities.


The Acclaim Explosives E1 is recommended for use as a direct replacement for ODS columns for the primary analysis. The Acclaim Explosives E2 may be used as either a primary or a confirmatory column. The unique selectivity and versatility of Acclaim Explosives E2 column provides a wider application range, including the analysis of explosives beyond U.S. EPA Method 8330 (ISO22478).

Complimentary baseline separation of 14 target compounds listed in EPA SW-846 method 8330

Column: 5µm, 4	.6 x 250mm		
Column:	5µm, 4.6 x 250mm		
Eluent:	EPA 8330 mix, 50 ppm each		
Temperature:	30 °C		
Flow Rate:	1 mL/min		
Inj. Volume:	5µL		
Detection:	UV, 254nm		
Peaks:	1. HMX 2. RDX 3. 1,3,5-Trinitrobenzene 4. 1,3-Dinitrobenzene 5. Nitrobenzene 6. Tetryl 7. 2,4,6-Trinitrotoluene 8. 4-Amino-2,6-Dinitrotoluene 9. 2,6-Dinitrotoluene 11. 2,4-Dinitrotoluene 12. 2-Nitrotoluene 13. 4-Nitrotoluene 14. 3-Nitrotoluene		

Rapid determination of EPA 8330A explosives

Column: Acclaim RSI C Explosives F2 2 2um

oolullill. Acciul	II HOLO EXPIOSI	703 LZ, Z.Zµm		
Dimension:	2.1 × 100mm			
HPLC System:	UltiMate 3000 RSLC HPG			
Mobile Phases:	Methanol:water 48:52 (v/v)			
Flow Rate:	0.34mL/min (293	bar)		
Injection Vol.:	1µL			
Temperature:	31°C			
Detection:	UV at 254nm, 10 I	Hz, 0.4 s resp. time		
Sample:	Calibration mix, 25µg/mL in 50% acetontrile			
Peaks:	1. HMX 2. RDX 3. 1,3,5-TNB 4. 3,5-DNB 5. NB 6. 2,4,6-TNT 7. Tetryl	8. 2,6-DNT 9. 2,4-DNT 10. 2-NT 11. 4-NT 12. 3-NT 13. 4-Am-2,6-DNT 14. 2-Am-4,6-DNT		

Acclaim Explosives Ordering Guide

Acclaim Explosives E1 Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.1mm ID	3.0mm ID	4.6mm ID
5	Guard Cartridges (2/pk)	10	-	-	069702
	HPLC Column	250	-	-	064305

Acclaim Explosives E2 Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.1mm ID	3.0mm ID	4.6mm ID
2.2	RSLC Column	100	076225	076227	-
		150	076226	-	-
3	HPLC Column	150	070083	070082	-
		250	-	070081	-
5	Guard Cartridges (2/pk)	10	-	071989	069703
-	HPLC Column	250	-	-	064309

Acclaim Guard Holder Ordering Guide

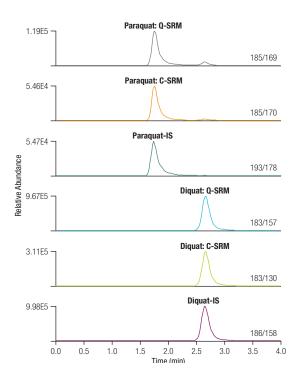
Description	Cat. No.
Acclaim SST Guard Cartridge Holder V-2	069580
Acclaim Guard Kit (Holder and coupler) V-2	069707
Guard to Analytical Column Coupler V-2	074188

Acclaim Explosives Kit Ordering Guide

Description	Cat. No.
E1 and E2 HPLC Columns (4.6 x 250mm) E1 and E2 Guard Cartridges (4.6 x 10mm), pkg of 2	064312

LC Columns and Accessories >> Columns for Analytical LC

Acclaim Trinity Q1


For Trace Analysis of Diquat and Paraquat

- Excellent resolution of diquat and paraquat
- Good peak shape
- Fast analysis
- LC/MS compatibility
- No ion-pairing reagent needed
- Easy to use

Acclaim Trinity Q1 columns are unique, high-efficiency, silica-based columns designed for the separation of the herbicides diquat and paraquat. These herbicides are toxic and residues are monitored in drinking water, wastewater and agricultural products. The Acclaim Trinity Q1 column is a tri-mode (WCX, WAX, RP), column based on Nano-polymer Silica Hybrid technology. It offers unmatched high-resolution and high-throughput trace analysis of the herbicides diquat and paraquat by LC-MS/MS and LC-UV methods.

Diquat and paraquat

Chromatograp	hic Conditio	ns				
System:		Scientific Dionex	UltiMate 3000			
- /	RSLC sy	rstem				
Column:		m Trinity Q1, 3µ	m			
Column Temp:	Ambien					
Mobile Phase:	25% An	nmonium Acetate	e (100 mM			
		75% Acetonitril				
Flow Rate:	0.5 mL/i		0			
Injection:	5uL					
injection.	ope					
Mass Spectro	metric Condi	itions				
System:	Thermo	Thermo Scientific Quantum TSQ Access				
- /	MAX Qu	adrupole Mass	Spectrometer			
Interface:		Heated Electrospary Ionization				
		SI II probe				
Spray Voltage:	1500 V					
Vaporizer Temp:	400 °C					
Sheath Gas Pres						
Aux Gas Pressu						
Capillary Temp:	350 °C					
		d Reaction Moni	toring (SBM)			
Quantitation Ivit	Jue. Jelecte		toring (Sriwi)			
Scan Events	Precursor	Quantitative	Confirmative			
		SRM (CID)	SRM (CID)			
Paraguat	185	169 (27)	170 (17)			
Paraquat-d.	193	178 (17)				

157 (22) 158 (22) 130 (31)

183 186

Diquat Diquat-d,

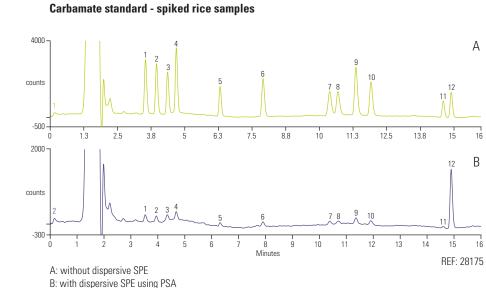
Acclaim Trinity Q1 Ordering Guide

Particle Size		Length (mm)	3.0 mm ID	2.1 mm ID
3	HPLC Column	50	079716	079718
5	Guard Cartridges (2/pk)	10	079719	079720

Designed for baseline separation of carbamate pesticides specified in US EPA Method 531.2

- Baseline separation of carbamate pesticides specified in US EPA Method 531.2
- Use with either LC/postcolumn derivatization/fluorescence or LC/MS detection
- Available in 2.2, 3 and 5µm particle size
- Compatible with both binary (methanol/water) and ternary (acetonitrile/methanol/water) mobile phase gradients
- High-efficiency, extremely low column bleed, and rugged column packing

Acclaim Carbamate columns are designed for baseline separation of carbamates (*N*-methylcarbamate and *N*-methylcarbamoyloxime pesticides) specified in US EPA Method 531.2. Carbamate pesticides are widely used throughout the world.


Drinking water and raw surface water is monitored for the presence of carbamate pesticides and related compounds using an established EPA Method 531.2 that uses HPLC with postcolumn derivatization. LC-MS is the method of choice for the ultimate sensitivity.

Acclaim Carbamate Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.1mm ID	3.0mm ID	4.6mm ID
2.2	RSLC Column	100	075597	-	-
		150	075596	-	-
3	Guard Cartridges (2/pk)	10	072930	072929	072928
	HPLC Column	150	072927	072926	072925
5	HPLC Column	250	_	_	072924

Acclaim Guard Holder Ordering Guide

Description	Cat. No.
Acclaim SST Guard Cartridge Holder V-2	069580
Acclaim Guard Kit (Holder and coupler) V-2	069707
Guard to Analytical Column Coupler V-2	074188

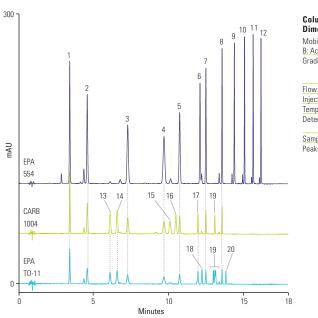
Column: Acclaim Carbamate, 3.0 × 150mm, 3µm Mobile Phase: Methanol–H₂O

Mobile Phase:	Methanol-H ₂ 0
In Gradient:	Methanol, -4.0-0.0 min, 14%
	2.0 min. 20%: 8.0 min. 40%:
	13.6–16 min, 70%
Temperature:	50 °C
Flow Bate:	0.9mL/min
Injection Volume:	250µL
Standard Concentration:	0.4µg/L for each component
Postcolumn Reagent 1:	0.2% NaOH, first reaction coi
i ostolullili neagent i.	at 100 °C
Postcolumn Reagent 2:	OPA regent, second reaction
	coil at room temperature
Flow Rate of Reagents	
1 and 2:	0.3mL/min
Fluorescence Detection:	Excitation/330nm and
	Emission/465nm
Peaks:	1. Aldicarb sulfoxide
	2. Aldicarb sulfone
	3. Oxamyl
	4. Methomyl
	5. 3-Hydroxy carbofuran
	6. Aldicarb
	7. Propoxur
	8. Carbofuran
	9. Carbaryl
	10. 1-Naphthol
	11. Methiocarb
	II. Wounddid

Acclaim Carbonyl C18

A silica-based, reversed-phase column designed specifically for separating DNPH derivatives of aldehydes and ketones

- Ideal selectivity for baseline resolution of DNPH derivatives of aldehydes and ketones regulated by various official methods, including EPA 554, EPA 8315, EPA 1667, EPA TO-11, and CARB 1004
- High efficiency for UHPLC performance
- Rugged columns with good lot-to-lot reproducibility
- Proven robust methods



Acclaim Carbonyl C18 columns are silica-based reversed phase columns designed specifically for separating DNPH derivatives of aldehydes and ketones. They exhibit superior resolution compared with other commercially available columns.

Aldehydes and ketones are common pollutants in air and water. The analytical difficulties that need to be overcome include their volatility, their reactivity, and their modest UV absorption. The reaction with dinitrophenylhydrazine (DNPH) is a convenient means of trapping, stabilizing, and tagging these substances. Several standard methods have been developed to apply this chemistry to various environmental situations. Some of the better known ones include CARB 1004 for vehicle exhaust, EPA 554 for drinking water, EPA 1667 for pharmaceutical wastewater, and EPA 8315 for general wastewater.

Acclaim Carbonyl C18 Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.1mm ID	3.0mm ID	4.6mm ID
2.2	RSLC Column	100	077972	077974	-
		150	077973	-	-
3	HPLC Column	150	079011	079010	-
		250	-	079009	-
5	Guard Cartridge (2/pk)	10	079012	079013	079014
	HPLC Column	150	-	-	079008
		250	-	-	083214

DNPH aldehydes and ketones

Column: Acclai Dimension: 2.1	m Carbonyl RSLC, 2.2µm × 150mm						
Mobile Phases: A:	D.I. water						
B: Acetonitrile							
Gradient (min):	-4.5 0.0 8.3 15.0 18.0						
	%A 48 48 48 0 0						
	%B 52 52 52 100 100						
Flow Rate:	0.400mL/min						
Injection:	1µL						
Temperature:	28°C						
Detection:	UV at 360nm						
	(data collection rate at 25Hz)						
Samples:	Calibration mixes diluted in methanol						
Peaks:	1. Formaldehyde DNPH						
	Acetaldehyde DNPH						
	Propionaldehyde DNPH						
	 Crotonaldehyde DNPH 						
	5. Butyraldehyde DNPH						
	Cyclohexanone DNPH						
	7. Valeraldehyde DNPH						
	8. Hexanal DNPH						
	9. Heptanal DNPH						
	10. Octanal DNPH						
	11. Nonanal DNPH						
	12. Decanal DNPH						
	13. Acetone DNPH						
	14. Acrolein DNPH						
	15. Butanone DNPH						
	16. Methacrolein DNPH						
	17. Benzaldehyde DNPH						
	18. Isovaleraldehyde DNPH						
	19. Tolualdehyde DNPH						
	20. Xylylaldehyde DNPH						

Hypersil Green PAH

Specially tailored alkyl bonded silica with a high carbon loading, designed specifically for the analysis of polyaromatic hydrocarbons (PAHs)

- Optimized for EPA Method 610
- Rapid analysis of 16 PAHs in 4 minutes using short, fast columns
- Available in $3\mu m$ and $5\mu m$ particle size and variety of column dimensions

Hypersil Green PAH Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
3	Guard Cartridge	10	2.1	31103-012101
			3.0	31103-013001
			4.6	31103-014001
	HPLC Column	100	2.1	31103-102130
			3.0	31103-103030
			4.6	31103-104630
	HPLC Column	150	2.1	31103-152130
			4.6	31103-154630
5	Guard Cartridge	10	4.6	31105-014001
	HPLC Column	100	4.6	31105-104630
		150	4.6	31105-154630
		250	4.6	31105-254630

Subscribe to our chromatography channel on YouTube www.youtube.com/chromatographyvideos

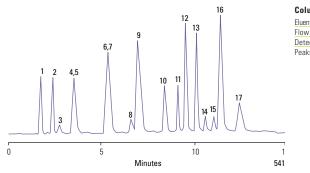
Dionex OmniPac

DVB polymer columns for combined ion exchange and reversed-phase separations

- Acid, base and solvent compatible, pH 0 to 14
- Ideal for the separation of high molecular weight organic acids
- Delivers optimal separation of very hydrophobic anions
- Delivers optimal separation of halogenated anions
- Provides simultaneous separation of neutral and ionic species
- Unique selectivity for polar and ionic organic analytes
- Delivers optimal separation of organic, hydrophobic, and halogenated cations

Thermo Scientific[™] Dionex[™] OmniPac[™] PAX-100 columns are used to separate hydrophobic anionic analytes such as larger organic acids. The Dionex OmniPac PAX-500 column simultaneously separates anionic and neutral species. The Dionex OmniPac PCX-100 column separates low-molecular-weight hydrophobic cations. The Dionex OmniPac PCX-500 column simultaneously separates cationic and neutral species in a single run.

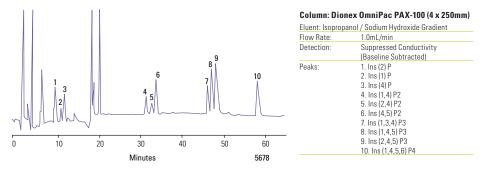
The Dionex OmniPac PAX- and PCX-100 and 500 are latex-based columns. Both PAX columns have an ion exchange capacity of about 40 µeq per column, providing equivalent anion exchange separations. The PCX columns have a capacity of approximately 120 µeq per column. The PAX- and PCX-500 columns separate analytes through both ion exchange and reversed-phase mechanisms, due to their higher reversed-phase capacity relative to the PAX- and PCX-100 columns.


Dionex OmniPac Anion Exchange Ordering Guide

Description	Porosity	Length (mm)	4.0mm ID
PAX-100	microporous	50	042151
		250	042150
PAX-500	macroporous	50	042153
		250	042152

Dionex OmniPac Cation Exchange Ordering Guide

Description	Porosity	Length (mm)	4.0mm ID
PCX-100	microporous	50	042193
		250	042189
PCX-500	macroporous	50	042195
		250	042191


Gradient separation of nitrogen-containing compounds

Column: Dionex OmniPac PCX-500 (4 × 250mm)

imn: Dion	iex UmniPac PCX-500 (4 × 250mm
t: Acetonitril	e/Sodium Chloride/Hydrochloric Acid Gradien
Rate:	1.0mL/min
ction:	UV, 254nm
S:	1. Orotic Acid
	4-Hydroxybenzamide
	3. Luminol Impurity
	4. Luminol
	5. Pyridine
	6. PABA
	7. 2,2'-Bipyridine
	8. p-Phenylenediamine
	9. Naphthylamine
	10. Nitrobenzoic Acid
	11. Tribenzylamine
	12. p-Nitroaniline
	13. 2,4-Dinitroaniline
	14. Dibenzylamine
	15. N-Methyl-N-nitrosoaniline
	16. 4-Chloro-2-nitroaniline
	17. 2,6-Dichloro-4-nitroaniline

Gradient separation of inositol mono-, di-, tri-, and tetraphosphates

Dionex IonPac NS1 and NS2

Polymeric Reversed-Phase Column Ideal for the Separation of Hydrophobic, Ionizable Compounds

The Thermo Scientific[™] Dionex[™] IonPac[™] NS1-10µm and NS1-5µm columns are packed with a neutral, macroporous, high-surface-area, ethylvinylbenzene polymer crosslinked with 55% divinylbenzene. This resin makes the NS1 resistant to solvents, acids, and bases, and permits the use of eluent from pH 0 to 14. The Dionex IonPac NS1 column is the column of choice for routine ion pair chromatography.

IonPac NS2 is a silica-based column for mobile-phase ion chromatography (MPIC) applications using eluents containing trifluoroacetic acid (TFA), heptafluorobutyric acid (HFBA), or tetrabutylammonium borate (TBAB). It provides high performance analysis for hydrophobic amines and hydrophobic acids using suppressed conductivity detection.

- Excellent resolution
- Good peak shape
- Ideal for separation of large molecules that carry localized charges, such as surfactants
- Compatible with acids, bases, and solvent from pH 0 to 14
- Can also be used for traditional polymeric reversed-phase applications
- Utilize ion-pair chromatography for difficult separations

D 1.1		г .		0.0 10	4.0 10
Description	Particle Size (µm)	Format	Length (mm)	2.0mm ID	4.0mm ID
IonPac NS1	5	HPLC Column	150	_	039568
	10	Guard Column	35	SP4356	039567
		HPLC Column	250	SP4354	035321
IonPac NS2	5	Guard Column	35	-	SP6907
		HPLC Column	150	-	SP6906
			250	-	SP6905

Dionex IonPac NS1 and NS2 Ordering Guide

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Hypersil BDS

A good choice for robust, general-purpose columns

Hypersil BDS Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	C18	C8	Phenyl	CN
	Drop-in Guard (4/pk)	10	2.1	28102-012101	28202-012101	-	-
			4.0/4.6	28102-014001	28202-014001	_	_
		50	2.1	28102-052130	28202-052130	_	-
			4.6	28102-054630	28202-054630	-	-
		100	2.1	28102-102130	28202-102130	_	_
			4.6	28102-104630	28202-104630	-	-
		150	2.1	28102-152130	28202-152130	_	_
			4.6	28102-154630	28202-154630	_	_
3	Drop-in Guard	10	2.1	28103-012101	28203-012101	28903-012101	28803-012101
	(4/pk)		3.0	28103-013001	28203-013001	_	_
			4.0/4.6	28103-014001	28203-014001	28903-014001	28803-014001
	HPLC Column	30	2.1	28103-032130	-	-	-
		50	2.1	28103-052130	28203-052130	28903-052130	28803-052130
			3.0	28103-053030	-	-	-
		400	4.6	28103-054630	28203-054630	-	-
		100	2.1	28103-102130	-	-	-
			3.0	28103-103030	-	-	-
			4.0	28103-104030	-	-	-
		450	4.6	28103-104630	28203-104630	-	-
		150	2.1	28103-152130	-	-	-
			3.0	28103-153030	28203-153030	-	-
			4.0	28103-154030	-	-	-
		10	4.6	28103-154630	28203-154630	28903-154630	28803-154630
5	Drop-in Guard (4/pk)	10	2.1	28105-012101	28205-012101	-	-
			3.0	28105-013001	28205-013001	-	-
		FO	4.0/4.6	28105-014001	28205-014001	28905-014001	28805-014001
	HPLC Column	50	2.1	28105-052130	28205-052130	-	-
			3.0	28105-053030	28205-053030	_	_
		100	4.6	28105-054630	28205-054630	-	-
		100	2.1	28105-102130	28205-102130	-	-
			3.0	28105-103030	_	_	_
			4.0 4.6	28105-104030 28105-104630		-	-
		125	••••••	••••	20203-104030	-	-
		125	3.0	28105-123030	_	-	-
			4.0 4.6	28105-124030 28105-124630	-	-	-
		150	••••••	28105-124030	-	-	-
		150	2.1 3.0	••••	_	_	_
			4.0	28105-153030 28105-154030		-	-
			4.6	28105-154630	28205-154630	28905-154630	28805-154630
		250	••••••	••••	20203-134030	20505-154050	20003-134030
		200	2.1 3.0	28105-252130 28105-253030	_	_	_
			4.0	28105-254030		28905-254030	_
			4.0	28105-254630	28205-254630	28905-254630	
_					20203-234030	20303-234030	20003-234030
Format		Length (mm)	ID (mm)	Cat. No.			
UNIGUARD Guard		10	1.0	851-00			
Cartridge Holder			2.1	852-00			
			3.0	852-00			
			4.0/4.6	850-00			

Hypersil Classical

A global standard for many existing methods

Hypersil ODS Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
3	Drop-in Guard (4/pk)	10	2.1	30103-012101
			3.0	30103-013001
			4.0/4.6	30103-014001
	HPLC Column	50	2.1	30103-052130
			3.0	30103-053030
			4.6	30103-054630
		100	2.1	30103-102130
			3.0	30103-103030
			4.0	30103-104030
			4.6	30103-104630
		125	2.1	30103-122130
			4.0	30103-124030
			4.6	30103-124630
		150	2.1	30103-152130
			3.0	30103-153030
			4.0	30103-154030
			4.6	30103-154630
		250	2.1	30103-252130
		200	3.0	30103-253030
			4.0	30103-254030
			4.6	30103-254630
5	Drop-in Guard (4/pk)	10	2.1	30105-012101
			3.0	30105-012101
			4.0/4.6	30105-014001
	HPLC Column	50	2.1	30105-052130
		50	3.0	••••••••••••
			••••••	30105-053030
		100	4.6	30105-054630
			2.1	30105-102130
			3.0	30105-103030
			4.0	30105-104030
			4.6	30105-104630
		125	2.1	30105-122130
			3.0	30105-123030
			4.0	30105-124030
		<u>.</u>	4.6	30105-124630
		150	2.1	30105-152130
			3.0	30105-153030
			4.0	30105-154030
			4.6	30105-154630
		200	2.1	30105-202130
			4.0	30105-204030
		<u>.</u>	4.6	30105-204630
		250	2.1	30105-252130
			3.0	30105-253030
			4.0	30105-254030
			4.6	30105-254630

Hypersil ODS-2 Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
3	Drop-in Guard (4/pk)	10	4.0/4.6	31603-014001
	HPLC Column	50	4.6	31603-054630
		100	4.0	31603-104030
			4.6	31603-104630
		150	4.6	31603-154630
5	Drop-in Guard (4/pk)	10	4.0/4.6	31605-014001
	HPLC Column	50	4.6	31605-054630
		100	4.6	31605-104630
		150	4.6	31605-154630
		250	4.0	31605-254030
			4.6	31605-254630

Hypersil MOS (C8) Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
5	Drop-in Guard (4/pk)	10	4.0/4.6	30205-014001
	HPLC Column	50	4.6	30205-054630
		100	4.6	30205-104630
		150	4.6	30205-154630
		250	4.0	30205-254030
			4.6	30205-254630

Hypersil MOS-2 (C8) Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
5	Drop-in Guard (4/pk)	10	4.0/4.6	30305-014001
	HPLC Column	150	4.6	30305-154630
		250	4.0	30305-254030
			4.6	30305-254630

Hypersil SAS (C1) Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
5	Drop-in Guard (4/pk)	10	4.0/4.6	30505-014001
	HPLC Column	150	4.6	30505-154630
		250	4.6	30505-254630

Hypersil Classical continued

Hypersil Phenyl Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
5	Drop-in Guard (4/pk)	10	4.0/4.6	30905-014001
	HPLC Column	50	4.6	30905-054630
		100	4.6	30905-104630
		150	4.6	30905-154630
		250	4.0	30905-254030
			4.6	30905-254630

Hypersil Phenyl-2 Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
5	Drop-in Guard (4/pk)	10	4.0/4.6	31905-014001
	HPLC Column	150	4.6	31905-154630
		250	4.6	31905-254630

Hypersil CPS Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
3	Drop-in Guard (4/pk)	10	4.0/4.6	30803-014001
	HPLC Column	150	4.6	30803-154630
5	Drop-in Guard (4/pk)	10	4.0/4.6	30805-014001
	HPLC Column	150	4.6	30805-154630
		250	4.0	30805-254030
			4.6	30805-254630

Hypersil CPS-2 Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
5	Drop-in Guard (4/pk)	10	4.0/4.6	31905-014001
	HPLC Column	150	4.6	31905-154630
		250	4.6	31905-254630

Hypersil APS-2 Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
3	Drop-in Guard (4/pk)	Guard (4/pk) 10 2.1 4.0/4.6 olumn 50 2.1 4.6 100 2.1 150 2.1 4.6 4.6 Guard (4/pk) 10 3.0 4.0/4.6 4.6 olumn 100 3.0 4.6 4.6 4.6 150 4.6 250 4.0	30703-012101	
			2.1 4.0/4.6 2.1 4.6 2.1 2.1 4.6 3.0 4.0/4.6 3.0 4.6 4.6 4.6	30703-014001
	HPLC Column	50	2.1	30703-052130
			4.6	30703-054630
		100	2.1	30703-102130
		150	2.1	30703-152130
			4.6	30703-154630
5	Drop-in Guard (4/pk)	10	3.0	30705-013001
			4.0/4.6	30705-014001
	HPLC Column	100	3.0	30705-103030
			4.6	30705-104630
		150	4.6	30705-154630
		250	4.0	30705-254030
			4.6	30705-254630

Hypersil Silica Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
3	Drop-in Guard (4/pk)	10	2.1	30003-012101
			3.0	30003-013001
			4.0/4.6	30003-014001
	HPLC Column	50	2.1	30003-052130
			3.0	30003-053030
			4.6	30003-054630
		150	4.6	30003-154630
5	Drop-in Guard (4/pk)	10	3.0	30005-013001
			4.0/4.6	30005-014001
	HPLC Column	50	4.6	30005-054630
		100	4.6	30005-104630
		150	4.6	30005-154630
		250	4.0	30005-254030
			4.6	30005-254630

Hypersil SAX Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
5	Drop-in Guard (4/pk)	10	2.1	34105-012101
			3.0	34105-013001
			4.0/4.6	34105-014001
	HPLC Column	50	2.1	34105-052130
		150	4.6	34105-154630
		250	3.0	34105-253030
			4.6	34105-254630

Other HPLC Columns

Aquasil HPLC Columns

Thermo Scientific[™] Aquasil[™] HPLC Columns are available in limited dimensions. Please contact Customer Service for more details.

BetaBasic HPLC Columns

Thermo Scientific[™] BetaBasic[™] HPLC Columns are available in limited dimensions. Please contact Customer Service for more details.

BETASIL HPLC Columns

Thermo Scientific[™]BETASIL[™] HPLC Columns are available in limited dimensions. Please contact Customer Service for more details.

HyPurity HPLC Columns

Thermo Scientific[™] HyPurity[™] HPLC Columns are available in limited dimensions. Please contact Customer Service for more details.

LC Columns and Accessories

Thermo Scientific LC Columns for Biomolecules

The diversity of biological samples in terms of compound structure and properties coupled with matrix complexity demands a range of sample separation modes, column chemistries, column configurations and detection techniques for their effective characterization. Thermo Scientific addresses these needs with a range of silica and polymeric columns specifically designed to handle the unique rigors of the analysis of proteins, peptides, oligonucleotides and other biomolecules.

Columns for proteins

Reversed Phase

Thermo Scientific[™] BioBasic[™] reversed-phase columns provide superior chromatography because the extra dense bonding chemistry used for these packings produce a highly stable, reproducible surface for reliable results. BioBasic reversed phase packings are available in C18, C8 and C4, chemistries.

Acclaim 300 C18 features 3µm silica particles for rapid analysis of complex protein digests. Compared to 5µm column packings, the smaller particles support increased flow rates and shallower gradients on shorter columns, for faster separation analysis.

Thermo Scientific[™] ProSwift[™] RP monolith columns uniquely provide the advantages of high resolution at exceptionally high flow rates for fast protein separation analysis.

Ion Exchange

Thermo Scientific[™] ProPac[™] and Thermo Scientific[™] MAbPac[™] ion exchange columns are based on a pellicular nonporous core particles providing exceptionally high resolution and efficiency for separations of protein variants, resolving isoforms that differ by a single charged residue. A hydrophilic layer prevents unwanted secondary interactions, and a grafted cation exchange surface provides pH-based selectivity control and fast mass transfer for high-efficiency separation and moderate capacity. ProPac WCX and MAbPac SCX columns are specifically developed for monoclonal separation and analytical characterization. Applications include protein variants in a variety of matrices, such as biopharmaceuticals and diary products. MAbPac columns are specifically designed for the analysis of monoclonal antibody variants.

BioBasic AX and BioBasic SCX ion exchange columns demonstrate superior reproducibility, both column-to-column and batch-to-batch because the 5µm, 300Å silica provides high efficiency. Both phases provide superior performance for proteins, peptides and nucleic acids using protein friendly ion exchange conditions.

ProSwift ion exchange monoliths provide an excellent alternative to porous or non porous ion exchange media. They offer increased loading capacity compared to pellicular phases combined with excellent resolution compared to traditional porous ion exchange media.

Size Exclusion

BioBasic SEC columns, based on silica with a proprietary polymeric coating, offer the mechanical stability of silica-based size exclusion columns with higher efficiencies than that of polymerbased columns. Four pore sizes (60Å, 120Å, 300Å, 1000Å) are available, making them ideal for molecular weight determination of peptides, proteins and water soluble polymers. They can also be used for sample clean-up prior to other analyses.

MAbPac SEC-1 (300Å 5µm silica) is a size exclusion chromatography (SEC) column specifically designed for separation and characterization of monoclonal antibodies (MAb) and their aggregates, as well as the analysis of Fab and Fc fragments resulting from proteolysis.

Hydrophobic Interaction

The ProPac HIC-10 column is a high-resolution, high-capacity, 300Å, 5µm silica-based HIC column that provides excellent high resolution separations of proteins and variants for analytical and preparative applications. ProPac HIC columns provide exceptional hydrolytic stability under the highly aqueous conditions used in HIC.

Affinity

The MAbPac Protein A column is a unique nonporous polymeric column designed for fast, accurate determination of monoclonal antibody titer analysis from harvest cell culture. The ProPac IMAC-10 is a high-resolution analytical and semipreparative column for separation of proteins and peptides by immobilized metal affinity chromatography. It is packed with 10µm, nonporous, polymeric beads coated with a hydrophilic layer, then grafted with poly(IDA) chains.

The ProSwift ConA-1S affinity monolith column is unsurpassed for fast, highly efficient enrichment and purification of Concanavalin A (Con A) binding glycans, glycopeptides, and glycoproteins containing high-mannose regions.

Columns for oligonucleotides

Thermo Scientific[™] DNAPac[™] strong anion exchange columns provide industry-leading resolution for analysis and purification of synthetic oligonucleotides. DNAPac columns can resolve full length oligonucleotides from n−1, n+1, and other failure sequences not possible with other columns.

Thermo Scientific[™] DNASwift[™] a strong anion exchange monolith column that provides exceptionally high oligonucleotide purity. This semipreparative column incorporates the high resolution and selectivity of the DNAPac column, with increased loading capacity.

Columns for carbohydrates

Thermo Scientific[™] GlycanPac[™] AXH-1 and AXR-1 columns are HPLC columns designed for the simultaneous separation of glycans by charge, size and polarity. Separating either flourescently labeled or native glycans.

Columns for proteomics

Nano, capillary and micro columns

Thermo Scientific[™] Acclaim[™] PepMap[™] and PepMap RSLC columns are specially designed for high-resolution analyses of tryptic, natural, and synthetic peptides. The columns are often applied for LC-MS/MS peptide mapping for protein identification, biomarker discovery, and systems biology. Due to their high loading capacity, the columns are exceptionally suitable for the analysis of Iow abundant peptides in complex proteomics samples. Acclaim PepMap Trap columns are typically applied for the desalting and preconcentration of peptides before LC separation with MS detection. The columns are designed to provide the highest efficiencies for one dimensional peptide mapping experiments and 2D-LC analyses. Thermo Scientific[™] PepSwift[™] monolithic columns are specially designed for fast separation and identification of proteins and peptides using nano and capillary LC coupled to MS.

Using highly pure chromatographic media and biocompatible, metal-free fused silica capillaries, Thermo Scientific[™] EASY-Column[™] capillary LC columns are produced with a focus on design simplicity and strict quality control. As a result,

ermo

they deliver outstanding chromatographic performance on any nano LC system.

Thermo Scientific[™] EASY-Spray[™] columns provide a fully integrated and temperature controlled combined column-emitter design with only a single nanoViper connection between the LC and the MS ion source. This dead volume reduction is a critical component in helping to deliver state of the art performance with ease of use. LC Columns and Accessories >> Columns for Biomolecules

Bio Columns Selection Guide

Analyte	Mode of Analysis	Recommended Column	
	0	BioBasic SEC	4-139
	Size Exclusion	MAbPac SEC-1	4-129
		BioBasic AX	4-141
	lon Exchange	ProPac SCX-10, WCX-10, SAX-10, WAX-10, SCX-20	<mark>4</mark> -116
	IUII Excilange	MAbPac SCX-10, MAbPac SCX-10 RS	<mark>4</mark> -127
Monoclonal		ProSwift IEX	<mark>4</mark> -123
antibodies and Proteins		BioBasic 18, 8, 4	4-140
FIULEIIIS	Reversed Phase	Acclaim 300 C18	<mark>4</mark> -142
	neverseu riidse	Accucore 150-C18, 150-C4	<mark>4</mark> -144
		ProSwift RP	<mark>4</mark> -124
	Hydrophobic Interaction	ProPac HIC-10	4-121
		MAbPac Protein A	<mark>4</mark> -126
	Affinity	ProPac IMAC-10	<mark>4</mark> -122
		ProSwift ConA-1S	<mark>4</mark> -125
	Proteomics	Acclaim PepMap	4-149
		PepSwift	<mark>4</mark> -154
Peptides		EASY-Column	<mark>4</mark> -155
		EASY-Spray Columns	<mark>4</mark> -153
	Applution	BioBasic 18, 8, 4	<mark>4</mark> -140
	Analytical	Acclaim 300	<mark>4</mark> -142
	Preparative	BioBasic	Inquire
Amino Acids	lon Exchange	AminoPac PA10	Inquire
(derivatized)	Reversed phase	Hypersil GOLD	4-026
Amino Acids	lon Exchange	AminoPac PA10	Inquire
(underivatized)	Reversed phase	Hypercarb	4-084
NULL CL	Anion Exchange	BioBasic AX	<mark>4</mark> -141
Nucleotides	Polar retention	Hypercarb	<mark>4</mark> -084
		BioBasic AX	<mark>4</mark> -141
Oligonucleotides	Ion Exchange	DNAPac PA100, PA200, PA200 RS	<mark>4</mark> -134
		DNASwift	<mark>4</mark> -137
	Ligand Exchange	HyperREZ XP	<mark>4-056</mark>
	Ion Exchange	CarboPac	Inquire
	Mixed Mode	GlycanPac AXH-1	4-032
Carbohydrates		Acclaim HILIC	4-067
Carbohydrates		Hypersil GOLD HILIC	4-037
	HILIC	Syncronis HILIC	4-081
		Accucore 150-Amide-HILIC	4-146
	Polar retention	Hypercarb	4-084

FLOW

View product information and application notes

HPLC Phases for Biomolecules

Silica-based Reversed Phase and Ion Exchange Phases

Phase	Particle Type	Particle Size (µm)	Pore Size (Å)	Nominal Surface Area (m²/g)	% Carbon	Endcapping	USP Code	Phase Code	Page
Acclaim Phase									
300 C18	Spherical, fully porous silica	3	300	100	8	Yes	L1	_	<mark>4</mark> -142
Acclaim PepMap	Phases								
100 C18	Spherical, fully porous silica	2, 3, 5	100	300	15	Yes	L1	_	<mark>4</mark> -149
300 C18	Spherical, fully porous silica	5	300	100	9	Yes	L1	-	<mark>4</mark> -149
100 C8	Spherical, fully porous silica	3, 5	100	300	9	Yes	L7	-	<mark>4</mark> -149
300 C4	Spherical, fully porous silica	5	300	300	3	Yes	L26	_	<mark>4</mark> -149
Accucore Phases	S								
150-C18	Spherical, solid core silica	2.6	150	80	7	Yes	L1	161	<mark>4</mark> -144
150-C4	Spherical, solid core silica	2.6	150	80	2	Yes	L26	165	<mark>4</mark> -145
150-Amide-HILIC	Spherical, solid core silica	2.6	150	80	_	_	-	167	<mark>4</mark> -146
BioBasic Phases									
18	Spherical, fully porous silica	5	300	100	9	Yes	L1	721	<mark>4</mark> -140
8	Spherical, fully porous silica	5	300	100	5	Yes	L7	722	<mark>4</mark> -140
4	Spherical, fully porous silica	5	300	100	4	Yes	L26	723	4-140
AX	Spherical, fully porous silica	5	300	100	3	No	-	731	4-141
SCX	Spherical, fully porous silica	5	300	100	3	No	L52	733	4-141

Columns for Protein Separations

Silica-based Size Exclusion Chromatography Phases

Phase	SEC Type	Particle Type	Particle Size (µm)	Pore Size (Å)	Exclusion Limit Operating Range (kDa)	USP Code	Phase Code	Page
BioBasic Pha	ases							
SEC 60	Aqueous	Spherical, fully porous silica	5	60	0.1 – 6	-	733	<mark>4</mark> -139
SEC 120	Aqueous	Spherical, fully porous silica	5	120	0.1 – 50	L33	734	<mark>4</mark> -139
SEC 300	Aqueous	Spherical, fully porous silica	5	300	1 – 500	L33, L59	735	<mark>4</mark> -139
SEC 1000	Aqueous	Spherical, fully porous silica	5	1000	20 - 4000	L33	736	<mark>4</mark> -139

Silica-based Hydrophobic Interaction Chromatography Phases

Column	Phase	Target Applications	Base Matrix Material	Particle Size (µm)	Pore Size (Å)	Nominal Surface Area (m²/g)	Breakthrough Capacity	Solvent Compatibility	pH Range
ProPac HIC-10	Hydrophobic Interaction	High resolution separations of proteins and protein variants	Spherical, porous ultrapure silica with amide/ethyl surface chemistry		300	100	340mg lysozyme per 7.8 x 75mm column	Ammonium sulfate/phosphate salts, organic solvent for cleanup	2.5-7.5

Search our database of thousands of applications www.thermoscientific.com/chromatography

Polymeric Ion Exchange, Reversed Phase and Affinity Columns

Column	Phase	Target Applications	Base Matrix Material	Functional Groups	Breakthrough Capacity	Recommended Flow Rate	Solvent Compatibility	Maximum Backpressure	pH Range
ProPac WCX-10	Weak Cation Exchange	High resolution separations of proteins and protein variants	Ethylvinylbenzene cross linked with 55% divinylbenzene 10µm nonporous particles	Carboxylate	6mg/mL lysozyme	0.2-2.0 mL/min	80% ACN, acetone. Incompatable with alcohols and MeOH	3000psi (21 MPa)	2.0-12
ProPac SCX-10	Strong Cation Exchange	High resolution separations of proteins and protein variants	Ethylvinylbenzene cross linked with 55% divinylbenzene 10µm nonporous particles	Sulfonate	3mg/mL lysozyme	0.2-2.0 mL/min	80% ACN, acetone, MeOH	3000psi (21 MPa)	2.0-12
ProPac SCX-20	Strong Cation Exchange	High Resolution separations of proteins and protein variants	Divinlybenzene 10µm nonporous particles	Sulfonic	20µg/mL Dynamic capacity	0.2-2.0 mL/min	50% acetonitrile	3000psi (21 MPa)	2.0-12
ProPac WAX-10	Weak Anion Exchange	High resolution separations of proteins and protein variants	Ethylvinylbenzene cross linked with 55% divinylbenzene 10µm nonporous particles	Tertiary amine	5mg/mL BSA	0.2-2.0 mL/min	80% ACN, acetone, MeOH,	3000psi (21 MPa)	2.0-12
ProPac SAX-10	Strong Anion Exchange	High resolution separations of proteins and protein variants	Ethylvinylbenzene cross linked with 55% divinylbenzene 10µm nonporous particles	Quaternary ammonium	15mg/mL BSA	0.2-2.0 mL/min	80% ACN, acetone, MeOH	3000psi (21 MPa)	2.0-12
ProSwift RP-1S	Reversed Phase	Fast protein analysis with high resolution of large peptides to medium proteins	Monolith; polystyrene- divinylbenzene	Phenyl	5.5mg/mL Insulin	2.0-4 .0 mL/min	Most common organic solvents	2800psi (19.2 MPa)	1.0-14
ProSwift RP-2H	Reversed Phase	Fast protein analysis with high resolution over a wide size range	Monolith; polystyrene- divinylbenzene	Phenyl	1.0mg/mL Lysozyme	1.0-10 mL/min	Most common organic solvents	2800psi (19.3 MPa)	1.0-14
ProSwift RP-3U	Reversed Phase	Fast protein analysis with high resolution of large proteins	Monolith; polystyrene- divinylbenzene	Phenyl	0.5mg/mL Lysozyme	1.0-16 mL/min	Most common organic solvents	2800psi (19.3 MPa)	1.0-14
ProSwift RP-4H	Reversed Phase	Fast protein analysis with high resolution	Monolith; polystyrene- divinylbenzene	Phenyl	2.3mg/mL Lysozyme	0.1-0.3 mL/min	Most common organic Solvents	1500psi	1.0-14
ProSwift SAX-1S	Strong Anion Exchange	Fast protein analysis with high resolution	Monolith; polymethacrylate	Quaternary amine	18mg/mL BSA	0.5-1.5 (4.6mm)	Most common organic solvents	1000psi (4.6mm) 2000psi (1.0mm)	2.0-12
ProSwift SCX-1S	Strong Cation Exchange	Fast protein analysis with high resolution	Monolith; polymethacrylate	Sulfonic acid	30mg/mL Lysozyme	0.5-1.5 mL/min (4.6mm)	Most common organic solvents	1000psi (4.6mm)	2.0-12
ProSwift WAX-1S	Weak Anion Exchange	Fast protein analysis with high resolution	Monolith; polymethacrylate	Tertiary amine (DEAE)	18mg/mL BSA	0.5-1.5 mL/min (4.6mm)	Most common organic solvents	1000psi (4.6mm) 2000psi (1.0mm)	2.0-12
ProSwift WCX-1S	Weak Cation Exchange	Fast protein analysis with high resolution	Monolith; polymethacrylate	Carboxylic acid	23mg/mL Lysozyme	0.5-1.5mL/min (4.6mm), 0.05-0.20	Most common organic solvents	1000psi (4.6mm) 2000psi (1.0mm)	2.0-12
ProPac IMAC-10	Immobilized Metal Affinity	High resolution separation of certain metal- binding proteins and peptides	Polystyrene divinylbenzene 10µm nonporous particles	Poly (IDA) grafts	>60mg lysozyme/mL gel (4x250mm)	1.0mL/min	EtOH, urea, NaCl, non-ionic detergents, glycerol, acetic acid, guanidine HCl	3000psi (21MPa)	2.0-12
ProSwift ConA-1S	Affinity	Concanavalin A binding (high- mannose) glycans, glycopeptides and proteins	Monolith; polymethacrylate	Concanavalin A ligands	12-16mg of protein	0-1.0mL/min	Up to 10% methanol	2000psi	5.0-8

Columns for Monoclonal Antibody Separations

Polymeric Ion Exchange Columns

Phase	IEX Туре	Particle Type	Particle Size (µm)	Pore Size (Å)	Dynamic Capacity	Recommended Flow Rate	Solvent Compatibility	Maximum Backpressure	pH Range	Page
MAbPac SCX-10	Strong cation exchange (sulfonic)	Polymeric, Highly crosslinked DVB	3, 5, 10	non-porous	MAbPac SCX-10 PEEK 3μm: 60μg/mL 5μm: 40μg/mL 10μm: 20μg/mL MAbPac SCX-10 RS 5μm: 40 μg/mL	0.2-2.0mL/min (Depending on the particle size and column pressure limits)	50% Acetonitrile	3000psi (21MPa) RS columns 7000psi	2.0-12	4-127
ProPac WCX-10	Weak cation exchange (carboxylate)	Polymeric, Non-porous DVB	10	non-porous	6mg/mL	0.2-2.0mL/min	80% ACN, acetone. Incompatible with alcohols including methanol	3000psi (21MPa)	2.0-12	

Silica-based Size Exclusion Chromatography Columns

Phase	SEC Type	Particle Type	Particle Size (µm)	Pore Size (Å)	Exclusion Limit Operating Range (kDa)	USP Code	Page
MAbPac SEC-1	Aqueous	Spherical, fully porous silica	5	300	1-500	L33, L59	<mark>4</mark> -129

Affinity Columns

Phase	Affinity ligand	Particle Type	Particle Size (µm)	Pore Size (Å)	Capacity	Recommended Flow Rate	Maximum temperature	Maximum Backpressure	pH Range	Page
MAbPac Protein A	Protein A	Polymeric	12	non-porous	100µg IgG/ column	< 2.5	30	1000	2.5-7.5	<mark>4-126</mark>

Columns for Carbohydrate Separations

Polymeric Ligand Exchange Columns

Phase	Particle Type	Particle Size (µm)	Pore Size (Å)	Nominal Surface Area (m²/g)	% Carbon	Endcapping	USP Code	Phase Code	Page
HyperREZ XP Pha	ses								
Carbohydrate H+	Spherical, polymer	8	-	-	-	-	L17	690	<mark>4</mark> -156
Carbohydrate Pb ²⁺	Spherical, polymer	8	-	-	_	_	L34	691	<mark>4</mark> -156
Carbohydrate Ca ²⁺	Spherical, polymer	8	-	_	_	_	L19	692	<mark>4</mark> -156
Carbohydrate Na ⁺	Spherical, polymer	10	_	-	_	_	_	693	<mark>4</mark> -156
Organic Acid	Spherical, polymer	8	_	-	_	_	L17	696	<mark>4</mark> -156
Sugar Alcohol	Spherical, polymer	8	_	-	_	_	L19	697	<mark>4</mark> -156

Silica-based HILIC and Mixed-Mode Columns

Phase	Particle Type	Particle Size (µm)	Pore Size (Å)	Nominal Surface Area (m²/g)	% Carbon	Endcapping	USP Code	Phase Code	Page
GlycanPac Phase	s								
AXH-1	Spherical, fully porous silica	1.9	175	220	-	Yes	-	-	<mark>4</mark> -132
AXH-1	Spherical, fully porous silica	3	120	300	-	Yes	-	-	<mark>4</mark> -132
Accucore Phase									
150-Amide-HILIC	Spherical, solid core silica	2.6	150	80	-	-	-	167	<mark>4</mark> -156

Monolithic Affinity Columns

Phase	Particle Type	Particle Size (µm)	Pore Size (Å)	Nominal Surface Area (m²/g)	% Carbon	Endcapping	USP Code	Phase Code	Page
ProSwift Phases ConA-1S	Concanavalin A binding (high mannose) glycans, glycopeptides and proteins	"Monolith;	175	220	-	Yes	-	-	<mark>4-125</mark>

Columns for Oligonucleotide Separations

-	Column	Target Applications	Base Matrix Material	Substrate Crosslinking	Latex Crosslinking	Capacity	Recommended Eluents	Recommended Flow Rate	Solvent Compatibility	Maximum Backpressure	pH Range
DNA PA10		High resolution separations of single and double stranded DNA or RNA oligonucleotides	13µm diameter nonporous substrate agglomerated with alkyl quaternary ammonium functionalized latex 100nm MicroBeads	55%	5%	40µeq	Hydroxide or sodium and lithium salts of Chloride or Perchlorate	1.5mL/min	0-100%	4000psi (28MPa)	2-12.5
DNA PA20		Improved high resolution separations of single and double stranded DNA or RNA orthogonal to DNAPac PA100	8μm diameter nonporous substrate agglomerated with alkyl quaternary ammonium functionalized latex 130nm MicroBeads	55%	5%	40µeq	Hydroxide, acetate/ or sodium and lithium salts of Chloride or Perchlorate	1.2mL/min	0-100%	4000psi (28MPa)	2-12.5
DNA PA20 RS		UHPLC-resolution separations of single and double stranded DNA or RNA Best available resolution	4µm diameter nonporous substrate agglomerated with alkyl quaternary ammonium functionalized latex 130nm MicroBeads	55%	5%	40µeq	Hydroxide, acetate/ hydroxide or sodium and lithium salts of Chloride or Perchlorate	1.3mL/min	0-100%	10,000 psi (69MPa)	2-12.5
DNA	Swift	High resolution separations for purification of oligonucleotides Highest latex-based capacity	Monolith; polymethacrylate substrate agglomerated with quaternary amine functionalized latex	70%	3%	8mg, of a 20 mer oligonucleotide	NaClO₄ and NaCl	0.5-2.5mL	Most Common Organic Solvents	1500psi, 10MPa	6.0-12.4

ProPac WCX-10 and SCX-10

Weak and strong cation exchange columns are based on a nonporous core particle providing exceptionally high resolution and efficiency for separations of protein variants

- · Characterization and quality control assessment of monoclonal antibodies and other proteins
- Unequalled high resolution separations
- High-efficiency peaks
- · Unmatched column-to-column and lot-to-lot reproducibility
- Useful for characterization of related protein variants including deamidation and MAb lysine truncation variants
- ProPac WCX-10 is a weak cation exchanger with a carboxylate functional groups
- ProPac SCX-10 is a strong cation exchange column with sulfonate functional groups

ProPac WCX-10 and SCX-10 columns can resolve isoforms that differ by a single charged residue. A hydrophilic layer prevents unwanted secondary interactions, and a grafted cation exchange surface provides pH-based selectivity control and fast mass transfer for high-efficiency separation and moderate capacity.

ProPac WCX-10 Ordering Guide

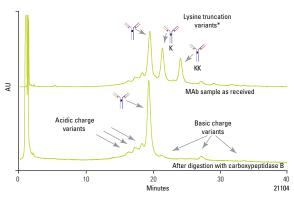
Particle Size (µm)	Format	Length (mm)	2.0mm ID	4.0mm ID	9.0mm ID	22.0mm ID
10	Guard Column	50	063480	054994	-	-
	HPLC Column	50	-	074600	-	-
		100	-	SP5829	-	-
		150	-	SP6703	-	-
		250	063472	054993	063474	SP5482

ProPac SCX-10 Ordering Guide

SCIEN

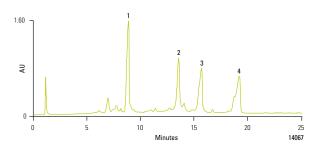
	-					
Particle Size (µm)	Format	Length (mm)	2.0mm ID	4.0mm ID	9.0mm ID	22.0mm ID
10	Guard Column	50	063462	079930	-	-
	HPLC Column	250	063456	054995	063700	SP5522

SCIENTIFIC


roduct No.

Serial No.

antific Chromatography Columns and Consumables 2014-2015


ProPac WCX-10 and SCX-10 continued

MAb lysine truncation variants

Eluents:	(E1) 20r	nM MES	S
	+ 115	mM Na(CI
	+ 1mN	Л EDTA,	, pH 5.5
	(E2) 20r	mM ME	S
	+ 145	mM Na	CI
	+ 1mN	Л EDTA,	, pH 5.5
Gradient:	t (min)	%E1	%E2
	0	100	0
	2	100	0
	40	0	100
	60	0	100
Sample:	MAb		
Flow Rate:	1.0mL/i	min	
λ:	280nm		
* Peak assignm	ent supporte	ed by da	ta from R.J. Harris,
et.al, J.Chroma			
Carboxypeptida			

Hemoglobin variants

Column: ProPac SCX-10, 4 × 250mm A) 20mM Sodium phosphate, 4mM Potassium cyanide, pH 6 Eluent: B) 1 M Sodium chloride in water C) Water Gradient: Time %A %В %С Init 50 0 50 50 30 min 50 Ω Flow Rate: 1mL/min Inj. Vol.: Detection:

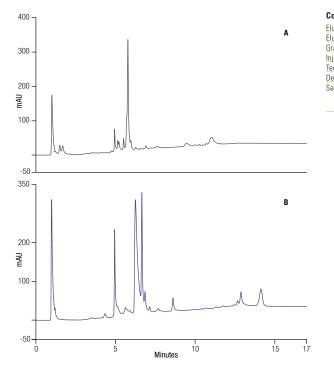
1. Fetal hemoglobin 2. Hemoglobin 3. Sickle cell hemoglobin

4. Hemoglobin C

. 10µĹ 220nm

ProPac Kits Ordering Guide

	J		
Part Number	Phase Description	Set Contents	Column Dimensions
SP5731	ProPac WAX-10 Lot Select Column Set	3 columns from 1 lot of resin	250 x 4mm
SP5732	ProPac WAX-10 Lot Select Column Set	3 lots of resin, 1 column from each lot	250 x 4mm
SP5729	ProPac SAX-10 Lot Select Column Set	3 columns from 1 lot of resin	250 x 4mm
SP5730	ProPac SAX-10 Lot Select Column Set	3 lots of resin, 1 column from each lot	250 x 4mm
SP5512	ProPac WCX-10 Lot Select Column Set	3 columns from 1 lot of resin	250 x 4mm
SP5513	ProPac WCX-10 Lot Select Column Set	3 lots of resin, 1 column from each lot	250 x 4mm
SP5727	ProPac SCX-10 Lot Select Column Set	3 columns from 1 lot of resin	250 x 4mm
SP5728	ProPac SCX-10 Lot Select Column Set	3 lots of resin, 1 column from each lot	250 x 4mm


Sample:

ProPac SCX-20 Columns

The ProPac SCX-20 column is a strong cation exchange (SCX) column designed specifically to provide high-resolution separations of proteins. The stationary phase is composed of $10\mu m$, non-porous, solvent compatible resin beads that are uniformly coated with a highly hydrophilic layer to reduce non-specific interactions between the bead surface and the biopolymer.

- Grafted cation-exchange surface provides pH-based selectivity control
- Fast mass transfer for high-efficiency separation

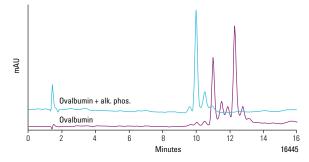
Snake venoms from naja naja and Russell's viper

Column:	ProPac	SCX-20	4 2	250mm
corumn.	1101 ac	307-20,	* ^	ZJUIIIII

uent A:		20mN	1 Tris p	Η7.	3			
uent B:		0.5M	NaCl ii	n Elu	Jent A	1		
adient:		1-100)% B in	n 10	min			
j. Volume:		10µL						
mperature	:	30°C						
etection:		UV, 2'	14nm					
amples:		A. Sna	ake Vei	nom	ı (Naja	a naja	1mg/r	mL
		B. Sna	ake Ver	nom	(Russ	sell's v	/iper)	
		1m	g/mL					

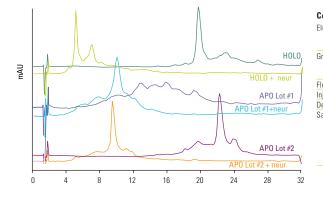
ProPac SCX-20 Ordering Guide

Particle Size (µm)	Description	Length (mm)	4.0mm ID
10	Guard Column	50	074643
	HPLC Column	250	074628


ProPac WAX-10 and SAX-10

Weak and strong anion exchange columns are based on a nonporous core particle providing unequalled high resolution and efficiency in the separations of protein variants

- Unequalled resolution
- High-efficiency peaks
- Useful for characterization and quality control assessment of closely-related protein variants
- Supports separation of proteins that differ by as little as one amino acid residue
- Neutral hydrophilic coat that eliminates protein-resin hydrophobic interactions
- Superior lot-to-lot and column-to-column reproducibility
- ProPac WAX-10 column is a weak anion exchanger with a tertiary amine functional group
- ProPac SAX-10 is a strong anion exchange column with quaternary amine functional group


These columns can resolve protein isoforms that differ by as little as one charged residue. A hydrophilic layer prevents unwanted secondary interactions and a grafted anion exchange surface provides pH based selectivity control and fast mass transfer for high peak efficiency and resolution separations.

Resolution of phosphorylation variants of ovalbumin

A) Water B) 2.0 M NaCl Eluents: C) 0.1 M Tris/HCI (pH 8.5) Gradient %А %В %С Time Init 80 0 20 15 min 67.5 12.5 20 Flow Rate: 1.0mL/min Inj.Volume 30µL Detection 214nm Ovalbumin before and after Sample alkaline phosphatase treatment

Effect of sialylation on transferrin chromatography

olumns: ProPa	c SAX-1	10, 4 ×	250m	Im
luents:	A) Wate B) 2.0 M C) 0.2 M	NaCl	CI (pH	9)
radient:	Time Init 30 min		%B 3 7	%C 10 10
low Rate:	1.0mL/n	nin		
nj. Volume:	50µL			
etection:	214nm			
amples:	human t and afte Digestic	ransfer er neura ons wer ot at 37	rin sai iminidi e carri	APO (iron poor) mples before ase treatment. ied out odium acetate

Column: ProPac SAX-10, 4 x 250mm

ProPac WAX-10 Ordering Guide

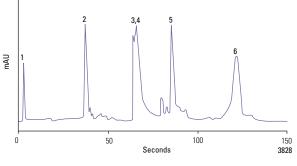
Particle Size (µm)	Format	Length (mm)	2.0mm ID	4.0mm ID	9.0mm ID	22.0mm ID
10	Guard Column	50	063470	055150	-	-
	HPLC Column	250	063464	054999	063707	SP5598

ProPac SAX-10 Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.0mm ID	4.0mm ID	9.0mm ID	22.0mm ID
10	Guard Column	50	063454	054998	-	-
	HPLC Column	250	063448	054997	063703	SP5594

ProPac PA1

For hydrophilic anionic protein separations


- Good for hydrophilic proteins and peptides
- Ideal for high-resolution separations of proteins with pl values from 3 to 11
- Available in semipreparative format
- Pellicular packing ensures high-efficiency and fast mass transport

The ProPac PA1 column supports the analysis and purification of hydrophilic anionic proteins and peptides.

ProPac PA1 Ordering Guide

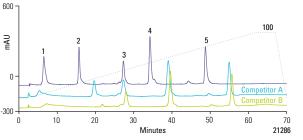
	HPLC Co		039658	040137	
10	Guard C	olumn 50	039657	_	
Particle S	Size (µm) Format	Length (mn	n) 4.0mm ID	9.0mm ID	

Gradient separation of protein standards

Eluent:	10 to 350mM NaCl in 1.0mM Tris, pH 8.2
Flow Rate:	5mL/min
Detection:	UV, 280nm
Peaks:	1. Horseheart Myoglobin 33µg 2. Contaminant – 3,4. Conalburnin 66 5. Ovalburnin 66 6. Soybean Trysin Inhibitor 66

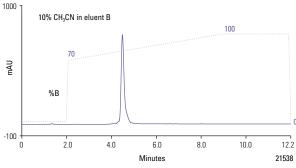
ProPac HIC-10

Hydrophobic Interaction Chromatography columns for the high resolution separation of proteins and peptides


- High-resolution HPLC separation of proteins, protein variants and peptides
- Proteins are separated under non-denaturing conditions
- High protein loading capacity for protein purification applications
- Wide range of applications
- Based on 5µm ultra high purity spherical silica gel particles with 300Å pores

The ProPac HIC-10 column is a high-resolution, high-capacity, silica-based HIC column that provides excellent separations of proteins and variants for analytical and preparative applications. ProPac HIC columns provide exceptional hydrolytic stability under the highly aqueous conditions used in HIC.

ProPac HIC-10 Ordering Guide


Particle Size (µm)	Format	Length (mm)	2.1mm ID	4.6mm ID	7.8mm ID
5	HPLC Column	75	-	-	063665
		100	063653	063655	-
		250	-	074197	-

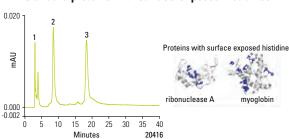
Protein mixture

Flow:	1.0mL/min
WVL:	214nm
Eluents:	(A) 2 M (NH ₄)2 SO ₄ in 0.1 M NaH ₂ PO ₄ (pH 7.0) (B) 0.1 M NaH ₂ PO ₄ (pH 7.0)
Sample:	Mixture of proteins (1mg/mL each final after 1:1 dilution with eluent A)
Inj. Volume:	20µL
Order of elution:	1. Cytochrome c 2. Myoglobin 3. Ribonuclease A 4. Lysozyme 5. Chymotryosinogen

Monoclonal antibody

Eluents:	Pac [®] HIC-10, 4.6 × 100mm (A) 0.5 M (NH ₄) ₂ SO ₄ in 0.1M NaH ₂ PO ₄ (pH 7.0)
	(B) 0.1 M NaH ₂ PO ₄ (pH 7.0)
Gradient:	70–100% B in 15 min
Flow:	1mL/min
Inj. Volume:	5µL (25µg)
Detection:	UV, 214nm
Sample:	MAb 50µL (50mg/mL) + 450µL Eluent B

ProPac IMAC-10

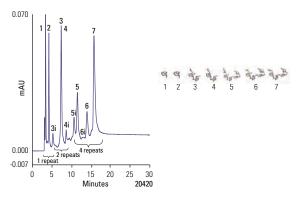

Immobilized Metal Affinity Chromatography (IMAC) column for analytical and semipreparative protein and peptide applications

- High-purity separations of metal-binding proteins
- State-of-the-art technology for reusable columns with metal tailored specificity
- Resolve target proteins using a single column in a high-resolution gradient run
- Retention control by imidazole concentration or pH gradient
- High loading capacity for protein purification applications
- Wide range of metal-specific applications

The ProPac IMAC-10 is a high-resolution analytical and semipreparative column for separation of proteins and peptides by immobilized metal affinity chromatography

ProPac IMAC-10 Ordering Guide

Particle Size (µm)	Format	Length (mm)	1.0mm ID	2.0mm ID	4.0mm ID	9.0mm ID	22.0mm ID
10	Loading Column	50	-	-	063667	063710	-
		250	-	-	-	063718	-
	HPLC Column	50	063617	063272	063276	063615	-
		250	-	063274	063278	063280	063282



Standard proteins with surface-exposed histidines

Column: ProPac IMAC-10 (4mm x 250mm)

E1: 20mM MES -	+ 0.5 M NaCl,	pH = 7.5	
E2: E1 + 100mM	imidazole, pl	H = 7.5	
Gradient:	t (min)	%E1	
	0	96	
	15	0 curve 7	
	40	0	
Inject Vol:	15µL		
Sample:	1. 0.25m	g/mL ribonuclease A	
	2. 1.00m	g/mL myoglobin	
	3. 1.50m	g/mL carbonic anhydrase	
Flow Rate:	0.5mL/min		
Wavelength:	280nm		

Prion-related peptides

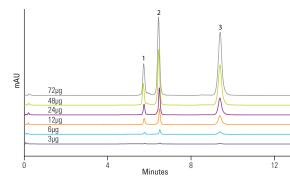
Column: ProPac IMAC-10 (4 × 250mm)

Eluent:	(E1) 20mM HEPES + 0.5 M NaCl, pH = 7.5 (E2) E1 + 50mM imidazole, pH = 7.5			
Gradient:	t (min) %A			
	0	95		
	10	0 curve 7		
	30	0		
Inj. Volume:	15µL			
Sample:	Prion-deriv	Prion-derived peptides		
Flow Rate:	0.5mL/mir	0.5mL/min		
Wavelength:	280nm			
Peak	# Sequence			
1	PHGGGWGQ			
2	PHGXGW0	PHGXGWGQ		
3	KKRPKP(PHGGGWGQ) ₂			
4	KKRP(PHGXGWGQ),			
5	KKRPKPWGQ(PHGĠGWGQ)			
6	WGQ(PHG	WGQ(PHGGGWGQ)		
7	WGA(PHGGGWGA)			
X = sarcosine (N-m	ethyglycine)		

ProSwift IEX

Monolith IEX columns for high-resolution and fast protein analysis

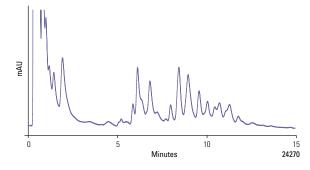
ProSwift IEX monoliths provide excellent resolving power at high mass loading combined with fast analysis capability


- High resolution
- High loading capacity
- Fast analysis
- Wide range of operational flow rates
- Excellent stability over a wide pH range
- Outstanding reproducibility and ruggedness

ProSwift polymer monolith (poly(Meth)acrylate) media are uniquely suited for separation of proteins. Each monolith is a single cylindrical, sponge-like polymer rod containing an uninterrupted, interconnected network of flow-through channels of a specific pore size. These large channels combined with the monolith's nonporous surfaces result in fast mass-transfer, high-resolution, and fast protein separations. The unique globular morphology of the polymer medium provides its high capacity.

ProSwift Ion Exchange Monolith Ordering Guide

Functional Group	Length (mm)	1.0mm ID	4.6mm ID
WAX-1S	50	066642	064294
WCX-1S	50	066643	064295
SAX-1S	50	068459	064293
SCX-1S	50	071977	066765


Dynamic protein loading capacity of ProSwift WCX-1S 1 × 50mm

Column: ProSwift WCX-1S, 1 × 50mm

A. 10mM Sodium phosphate (pH 7.6) B. 1 M NaCl in eluent A	
0% B for 2 min, 0–85% B in 7.5 min, 85% B for 3 min	
0.2mL/min	
1–24µL	
30°C	
UV, 280nm	
Protein mix, 1mg/mL each	
1. Ribonuclease A	
2. Cytochrome C	
3. Lysozyme	

Protein separation

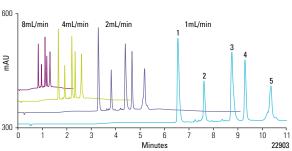
Column: ProSwift WAX-1S, 1 × 50mm

Eluents:	A. 10mM Tris, pH 7.6 B. 1 M NaCl in 10mM Tris, pH 7.6
Gradient:	5 to 55% of B in 13 min, hold for 2 min
Flow Rate:	0.2mL/min
Temperature:	30°C
Detection:	UV, 280nm
Inj. Volume:	1.3µL
Sample:	1.25mg/mL <i>E. coli</i> protein

ProSwift RP

Reversed-phase monolith columns that uniquely provide the advantages of high resolution at exceptionally high flow rates for fast protein separations and analysis

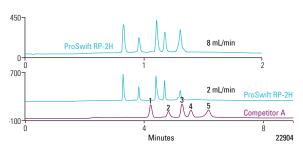
Deliver the outstanding resolving power of nonporous analytical media combined with faster separations and analysis than any bead based columns available.


- High resolution at high speed
- Highest operational flow rates available
- High throughput and improved productivity
- Excellent stability over a wide pH range of 1 to 14
- Outstanding reproducibility and ruggedness
- High stringent wash compatible, for example, 1 M NaOH
- High loading capacity

ProSwift polymer reversed-phase monolith media are (polyStyrene-co-DVB) uniquely suited for the separation of proteins. Each monolith is a single cylindrical polymer rod containing an uninterrupted, interconnected network of flow-through channels of a specific pore size; ranging from small channel (1S), medium size channels (2H & 4H) to very large channel (3U) sizes. These channels and the monolith's nonporous surfaces result in fast mass transfer for high-resolution and fast protein separations. The channels also produce low backpressure, allowing the use of higher linear velocities with minimal loss of resolution.

ProSwift RP Ordering Guide

Functional Group	Length (mm)	1.0mm ID	4.6mm ID
RP-1S	50	-	064297
RP-2H	50	-	064296
RP-3U	50	-	064298
RP-4H	50	069477	-
RP-4H	250	066640	-


1, 2, 4, or 8mL/min (A) DI H.O/CH.CN (95:5: V/V) + 0.1% TFA

Flow Rate:

Column: ProSwift RP-2H (4.6 × 50mm)

LIUEIIIS.	(B) DI H ₂ O/CH ₃ CN (5:95; V/V) + 0.1% TFA		
Gradient:	1mL/min: 1-75% B in 12 min		
	2mL/min: 1-75% B in 6	min	
	4mL/min: 1-75% B in 3	min	
	8mL/min: 1-75% B in 1	.5 min	
UV Detection:	214nm		
Sample:	Mixture of five proteins		
Inj. Volume:	5µL		
Order of Elution:	1. Ribonuclease A	1.5mg/mL	
	2. Cytochrome	C 0.5	
	3. BSA 1.5		
	4. Carbonic anhydrase	0.9	
	5. Ovalbumin	1.5	

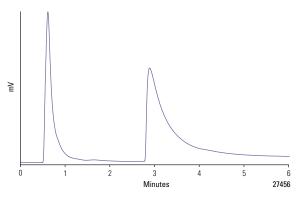
Competitive comparison

Columns:	1. ProSwift RP-2H, 4.6 × 50mm 2. Competitor A, 4.6 × 100mm, 15µm		
Eluents:	(A) DI H ₂ O/CH ₃ CN (95:5; V/V) + 0.1% TFA (B) DI H ₂ O/CH ₂ CN (5:95; V/V) + 0.1% TFA		
Gradient:	2mL/min: 1-75% B in 6 min 8mL/min: 1-75% B in 1. min		
Flow Rate:	2 or 8mL/min		
Inj. Volume:	5µL		
Temperature:	30°C		
Detection:	UV, 214nm		
Sample:	Mixture of five prote	ins	
Peaks:	1. Ribonuclease A	1.5mg/mL	
	Cytochrome C	0.5	
	3. BSA	1.5	
	4. Carbonic anhydrase 0.9		
	5. Ovalbumin	1.5	

ProSwift ConA-1S

For the highly efficient enrichment and purification of Con A binding glycans and glycoconjugates

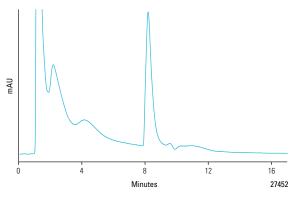
The ProSwift ConA-1S affinity monolith column is unsurpassed for fast, highly efficient enrichment and purification of Concanavalin A (Con A) binding glycans, glycopeptides, and glycoproteins.


- Highly efficient enrichment and purification through high-mannose-Con A binding
- Highly purified glycan and glycoconjugate products
- High capacity and ligand density
- High sample recovery
- Low elution volumes
- Fast separations
- HPLC compatible
- Reusable for over one hundred purifications

The HPLC compatible ProSwift ConA-1S affinity column maintains the specificity and selectivity for Con A binding glycans and glycoconjugates. The high capacity monolith (poly(meth)acrylate) and ligand density of the ProSwift ConA-1S column facilitates the highly efficient enrichment of samples and can purify up to 2mg of glycoproteins. The high peak efficiency monolith (poly(meth)acrylate) column produces sharp, narrow peaks resulting in low elution volumes of highly concentrated products. The column is reusable, and many enrichments and purifications are possible with minimal loss of capacity.

ProSwift ConA-1S Ordering Guide

Functional Group	Length (mm)	5.0mm ID
ConA-1S	50	074148


Fast, highly efficient enrichment and purification of a group of fluorescently labeled glycans

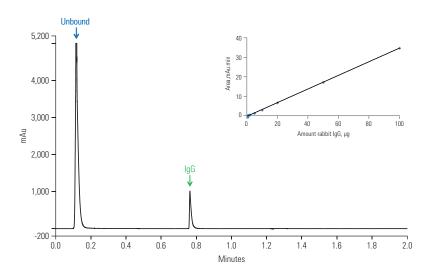
Column: ProSwift ConA-1S (5 x 50mm)

low rate:	1.0mL/min
Eluent A:	50mM NaOAc, 0.2M NaCl, pH 5.3, with 1mM CaCl, and 1mM MnCl,
Eluent B:	100mM α-methyl mannoside in eluent A
Gradient:	0% B for 2 min, 0-100% B in 0.5 min, 100% B for 3.5 min
Femperature:	25°C
Sample:	2-AB labeled serum protein N-glycans
Detection:	Fluorescence, EM at 420nm

Glycopeptide enrichment

Column: ProSwift ConA (5 × 50mm)

Eluent A:	50mM NaOAc, 0.2 M NaCl, pH 5.3, with 1mM CaCl ₂ , 1mM MgCl ₂		
Eluent B:	100mM α -methyl-mannopyranoside in eluent A		
Flow Rate:	0.5mL/min		
Temperature:	25°C		
Detection:	UV 214nm		
Sample:	Trypsin digested HRP peptides		
Inj. Volume:	40µL		
Gradient:	100% A from 0–5 min, 100% B from 6–15 min, 100% A from 16–25 min		


MAbPac Protein A Column

Fast MAb titer analysis

The Thermo Scientific MAbPac Protein A column is an affinity column designed to provide fast monoclonal antibody (MAb) titer analysis of samples such as harvest cell cultures (HCC). This HPLC column offers high throughput and accurate analysis through a combination of low back pressure and high efficiency. The MAbPac Protein A column format allows rapid automation of loading, binding, elution and collection using Thermo Scientific biocompatible systems. The column is based on a novel non-porous polymeric resin consisting of a divinylbenzene core and a hydrophilic surface, optimized for affinity separation.

- High efficiency column
- Rugged
- Excellent sample recovery
- Designed for ease of use and automation

Harvest cell culture titer analysis

Column: MAbPac Protein A, (4 × 35mm)

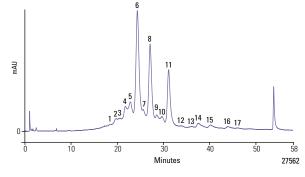
Flow Rate:	2 mL/min
Eluent A:	50mM Sodium Phosphate, 150mM NaCl, 5% acetonitrile, pH 7.5
Eluent B:	50mM Sodium Phosphate, 150mM NaCl,5% acetonitrile, pH 2.5
Gradient:	0% B for 0.2 mins, 100% B for 0.60 mins,0% B for 1.20 mins
Temperature:	30°C
Detection:	280 nm
Injection volume:	10µL
Sample:	MAb B, 5mg/mL Harvest Cell Culture

MAbPac Protein A Ordering Guide

Particle Size (µm)	Format	Length (mm)	4.0 mm ID
12	HPLC Column	35	082539

MAbPac SCX-10

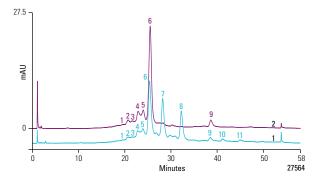
Strong cation exchange column designed specifically for the high-resolution, high efficiency analysis of monoclonal antibodies and associated variants


- Exceptionally high resolution for monoclonal antibody variants
- High efficiency
- Ideal for characterization and quality control assessment of monoclonal antibodies
- Unmatched column-to-column and lot-to-lot reproducibility
- Hydrophobic interactions essentially eliminated
- · Ideal for stability studies
- · Meets the regulatory requirements for biopharmaceutical characterization

The unique nonporous pellicular resin provides exceptionally high resolving power, permitting the separation of monoclonal antibody variants that differ by as little as one charged residue. Hydrophobic interactions with the resin are essentially eliminated for very efficient peaks.

MAbPac SCX-10 Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.0mm ID	4.0mm ID	9.0mm ID
3	HPLC Column	50	-	077907	-
5	HPLC Column	50	-	078656	-
		150	-	085198	-
		250	-	078655	-
10	Guard Column	50	075749	074631	-
	HPLC Column	50	-	075603	-
		150	-	075602	-
		250	075604	074625	SP6866


High resolution separations of monoclonal antibody variants

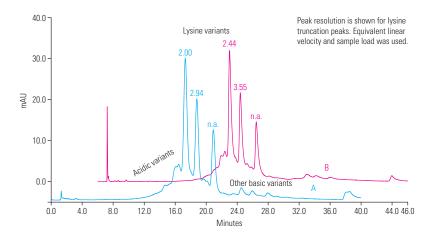
Column: MAbPac SCX-10 (4 × 250mm)

001011111.1017(0)			
Eluents:	A. 20mM MES (pH 5.6) + 60mM NaCl B. 20mM MES (pH 5.6) + 300mM NaCl		
Gradient:	15–36% B in 50 min		
Flow Rate:	1mL/min		
Temperature:	30°C		
Inj. Volume:	10µL		
Detection:	UV at 280nm		
Sample:	MAb B, 5mg/mL		
Peaks 1–5:	Acidic variants		
Peaks 6, 8, 11:	C-Terminal Lys variants		
Peaks 12-17:	Basic variants		

Baseline resolution of C-terminal lysine variants of a monoclonal antibody

olumn: MAbPac SCX-10 (4 × 250mm)

Column: MAbPa	ic SCX-10 (4 × 250mm)
Eluents:	A. 20mM MES (pH 5.6) + 60mM NaCl B. 20mM MES (pH 5.6) + 300mM NaCl
Gradient:	15–36% B in 50 min
Flow Rate:	1mL/min
Temperature:	30°C
Inj. Volume:	5µL
Detection:	UV at 280nm
Samples:	 MAb B, 900µg in 100µL (no carboxypeptidase) MAb B, 900µg in 100µL + carboxypeptidase, 50µg, incubation at 37°C for 3 h
Both Chromatograms	: Peaks 1–5: Acidic variants
Sample 1:	Peaks 6-8: C-Terminal lysine truncation variants of main peak Peaks 9–11: C-Terminal lysine truncation variants of minor variant peak
Sample 2:	Peak 6 results from peaks 6, 7, and 8 after CBP treatment. Peak 9 results from peaks 9, 10, and 11 afer CBP treatment


MAbPac SCX-10 RS Columns

BioRS, strong cation exchange column designed for monoclonal antibodies and associated variants

- UHPLC, high throughput analysis
- Specially developed bio-inert PEEK lined stainless steel column hardware
- High pressure compatibility
- Suitable for operation up to 7,000 psi

Higher resolution and throughput of MAb charge variant UHPLC separations can be achieved using the small particle MAbPac strong cation-exchange phase with specially developed bio-inert PEEK lined stainless steel column hardware. These columns take advantage of smaller resin size as well as longer column length to maximize the resolution of MAb variant separation, and are suitable for operation up to 7,000 psi. Higher pressure compatibility of the column hardware allows use of high flow rates for faster separation

Improved MAb resolution

Column: MAbPac SCX, 5µm

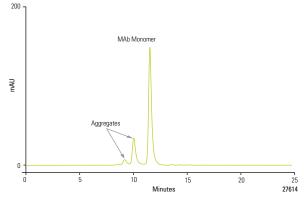
4.6 × 250mm
MAb 5mg/mL
15µL
20 mM MES pH 5.6 + 60 mM
20 mM MES pH 5.6 + 300 mM NaCl
1.5 mL/min
~8900Psi
Gradient: 33-53% B in 30 min
Gradient: 33-53% in 20 min

MAbPac SCX-10 RS Ordering Guide

Particle Size (µm)	Format	Length (mm)	4.6 mm ID
5	BioRS Column	50	082674
		150	085209
		250	082673

MAbPac SEC-1

A size exclusion chromatography (SEC) column specifically designed for the high resolution separation and characterization of monoclonal antibodies (MAb) and their aggregates


- Anaylsis of monoclonal antibodies (MAb) and their aggregates
- Analysis of MAb Fab and Fc fragments.
- Hydrophilic bonded layer for minimal nondesired interactions between the biomolecules and the stationary phase
- Nonmetallic and Biocompatible PEEK housing eliminates metal contamination from the column hardware
- Stable surface bonding leads to low column bleed and compatibility with MS, ELSD and Corona CAD detection
- Reproducible and rugged
- Superior performance for the analysis of monoclonal antibodies, even using high and low-salt concentrations

The stationary phase is packed in bio-inert PEEK format and is compatible with different eluent conditions containing both low and high concentrations of salt in mobile phases, and mass spectrometry friendly volatile eluents.

MAbPac SEC-1 Ordering Guide

Particle Size (µm)	Format	Length (mm)	4.0mm ID
5	Guard Column	50	074697
	HPLC Column	150	075592
		300	074696

Monoclonal antibody aggregate separation

Column: MAbPac SEC-1, 5µm

•••••••	uo o = o 1/ opini
Dimension:	4.0 × 300mm (PEEK)
Mobile Phase:	0.3 M NaCl in 50mM phosphate buffer pH 6.8
Temperature:	30°C
Flow Rate:	0.20mL/min
Inj. Volume:	2µL
Detection:	UV, 280nm
Sample:	MAb (10mg/mL)

Monoclonal Antibody Characterization and Analysis Kits

MAb Charge Variant Analysis IEX Column Kit

MAb Charge Variant Analysis IEX Column Kit includes two ion-exchange (IEX) specialty columns for MAb charge variants analysis. This kit is a convenient starter kit for researchers at the beginning of MAb analysis projects, and facilitates the screening of two columns for determination of the best column for their specific monoclonal antibody sample. Included in the Kit:

- ProPac WCX-10 Analytical column, 4 × 250mm (P/N 054993), a weak cation-exchange column, the industry standard for high-resolution, high-efficiency analysis of monoclonal antibodies and associated variants
- MAbPac SCX-10 Analytical column, 4 × 250mm (P/N 074625), a strong cation-exchange column designed specifically for high-resolution, high-efficiency analysis of monoclonal antibodies and associated variants

MAb Charge Variants Kit Ordering Guide

Description	Cat. No.
MAb Charge Variants Analysis IEX Column Kit	076196

MAb Analysis IEX and SEC Column Kit

The MAb Analysis IEX and SEC Column Kit includes two columns: an ion-exchange (IEX) column and a size-exclusion (SEC) column. This kit is a convenient starter and column replacement kit for MAb analysis projects.

Included in the kit:

- MAbPac SCX-10 Analytical column, 4 × 250mm (P/N 074625), a strong cation-exchange column designed specifically for high-resolution, high-efficiency analysis of monoclonal antibodies and associated variants.
- MAbPac SEC-1 Analytical column, 4 × 300mm (P/N 074696), a size-exclusion column designed for separating monoclonal antibody (MAb) monomers, aggregates, and fragments.

MAb Analysis Kit Ordering Guide

Description	Cat. No.
MAb Analysis IEX and SEC Column Kit	076197

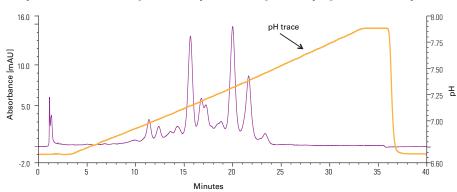
Thermo Scientific pH Gradient Buffers

Simple method development for charge variant characterization

The Thermo Scientific pH gradient platform accelerates method development and facilitates method transfer to QA/QC for a wide range of protein and MAb charge variants through a generic LC-based approach to charge variant characterization.

- Patented buffer formulations enable fast, robust and reproducible pH gradients that are simple to optimize and easily automated
- Ready to use with existing LC columns and systems, without the need for time consuming mobile phase adjustments
- Applicable to the majority of MAbs

Thermo Scientific pH buffer concentrates used in the pH gradient platform can be purchased individually or as a pair, in quantities of 125mL or 250mL. For added convenience, the 125mL buffers can also be bundled with columns in a number of specifically preconfigured kits

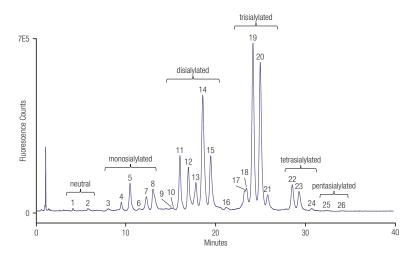

- The CX-1pH gradient starter kit contains 125mL each of buffers A and B, plus a MAbPac SCX-10, 10 $\mu m, 4\times 250mm$ column
- \bullet The CX-1 pH gradient high throughput kit contains 125mL each of buffers A and B, plus a MAbPac SCX-10, 5µm, 4 \times 50mm column
- The CX-1 pH gradient high resolution kit contains 125mL each of buffers A and B, plus a MAbPac SCX-10, 5 $\mu m,$ 4 \times 250mm column

For the ultimate flexibility, the preconfigured kits are also available as platforms, including the pH Designer Software. The options are listed in the table below:

pH Gradient Buffers Ordering Guide

Description	Cat. No.
CX-1 pH Gradient Buffer A (pH 5.6), 125mL	083273
CX-1 pH Gradient Buffer B (pH 10.2), 125mL	083275
CX-1 pH Gradient Buffer Kit (pH 5.6 to 10.2), 125mL	083274
CX-1 pH Gradient Buffer A (pH 5.6), 250mL	085346
CX-1 pH Gradient Buffer B (pH 10.2), 250mL	085348
CX-1 pH Gradient Buffer Kit (pH 5.6 to 10.2), 250mL	085349
CX-1 pH Gradient Starter Kit (pH 5.6 to 10.2), 125mL	083381
CX-1 pH Gradient High Throughput Kit (pH 5.6 to 10.2), 125mL	083378
CX-1 pH Gradient High Resolution Kit (pH 5.6 to 10.2), 125mL	083272
CX-1 pH Gradient Starter Platform (pH 5.6 to 10.2), 125mL	083380
CX-1 pH Gradient High Throughput Platform (pH 5.6 to 10.2), 125mL	083376
CX-1 pH Gradient High Resolution Platform (pH 5.6 to 10.2), 125mL	083270
pH Designer Software	085022

Optimiztion of MAb charge variant separation using a linear pH gradient: 25% B (pH 6.75) to 50% B (pH 7.9)


GlycanPac AXH-1 Column

High-Resolution Columns for Glycan Analysis

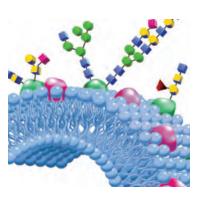
- Unique glycan selectivity based on charge, size and polarity
- Excellent resolution for both native and labeled glycans
- Useful for both high-resolution glycan profile characterization and easy quantification of glycans based on charge
- Compatible with fluorescence and MS detection methods
- High chromatographic efficiency and excellent column stability

Thermo Scientific[™] GlycanPac[™] AXH-1 is a high-performance, silica-based HPLC column for simultaneous separation of glycans by charge, size and polarity. It is designed for high-resolution and high-throughput analysis with unique selectivity for biologically important glycans, either labeled or native, by LC-fluorescence and LC-MS methods.

Separation of 2AB labeled N-glycans from bovine fetuin by charge, size and polarity

Column: GlycanPac AXH-1 (1.9µm)

Dimension:	2.1 × 150mm
Mobile Phase	A: Acetonitrile (100%)
	B: Water
	C: Ammonium formate (100mM, pH = 4.4)
Flow Rate:	0.4mL/min
Injection Vol.:	50 Pmoles
Temperature:	30 °C
Detection:	Fluorescence at 320/420nm
Sample:	2AB labeled N-glycan from bovine fetuin

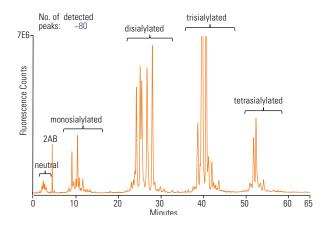

Time (min)	% A	% B	% C	Flow (mL/min)	Curve
-10	78	20	2	0.4	5
0	78	20	2	0.4	5
30	70	20	10	0.4	5
35	60	20	20	0.4	5
40	50	20	30	0.4	5

GlycanPac AXH-1 Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.1 mm ID	3.0 mm ID	4.6 mm ID
1.9 UHPLC Column	100	082473	-	-	
		150	082472	-	-
		250	082521	-	-
3 Guard Cartridges (2/pk)		10	082476	082475	082474
	HPLC Column	150	082470	082469	082468

Acclaim Guard Holder Ordering Guide

Description	Cat. No.
Acclaim Guard Cartridge Holder V-2	069580
Acclaim Guard Kit (Holder and coupler) V-2	069707
Guard to Analytical Column Coupler V-2	074188


GlycanPac AXR-1

Ultra-high resolution UHPLC columns for glycan analysis

- Excellent glycan selectivity based on hydrophobicity, charge, size, and isomerization
- High resolution for isomeric glycans
- Compatibility with fluorescence and MS detection methods
- High column efficiency and stability
- Ideal tool for qualitative, quantitative and structural analysis of glycans

The GlycanPac AXR-1 column, based on 1.9µm, high-purity and spherical silica substrates, combines both weak anion-exchange (WAX) and reversed-phase (RP) retention mechanisms for optimal selectivity and ultra-high resolution for glycan separation. The WAX functionality separates glycans based on charge, and RP property facilitates high resolution for glycans of the same charge according to their hydrophobicity, branching and isomerization. As the result, the GlycanPac AXR-1 column provides unparalleled resolutions for complex charged glycans.

Separation of 2AB labeled N-glycans from bovine fetuin using GlycanPac AXR-1

Column: GlycanPac AXR-1, 1.9µm				
Dimension:	2.1 × 150mm			
Mobile phase:	A: acetonitrile B: D.I. water C: ammonium formate (100 mM, pH =4.4)			
Flow Rate:	0.4 mL/min			
Temperature:	40 °C			
Injection Vol.:	100 pmoles			
Detection:	fluorescence at 320/420nm			

Sample: 2AB labeled N-glycan from bovine fetuin

Time (min)	% A	% B	% C	Curve
-10	0	95	5	5
0	0	95	5	5
1	0	95	5	5
30	1	74	25	5
65	20	50	30	5

GlycanPac AXR-1 Ordering Guide

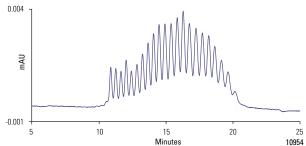
Particle Size (µm)	Format	Length (mm)	2.1 mm ID
1.9	UHPLC Column	150	088136
		250	088135

DNAPac PA100

A strong anion exchange column developed to provide high-resolution analysis and purification of synthetic oligonucleotides

- High-resolution oligonucleotide separations
- Capable of n, n-1 resolution for oligonucleotides
- Resolves oligonucleotides with secondary structures
- Compatible with solvent, high pH or high temperatures
- Analyzes phosphorothioate-based clinical samples
- Provides easy scale-up from 2.0mm to 22mm ID column (>100x)

The DNAPac PA100 is a high-resolution anion-exchange column that provides single-base resolution. It is stable under denaturing conditions, rugged, reliable, and can be readily scaled up. The DNAPac PA100 is a 13 µm pellicular, nonporous polymeric resin with bound quaternary amine-functionalized Thermo Scientific[™] Dionex[™] MicroBeads[™]. The rapid mass-transport characteristics of this resin result in very high-resolution oligonucleotide separations.


DNAPac PA100 can resolve full length from n-1, n+1, and other failure sequences.

DNAPac PA100 Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.0mm ID	4.0mm ID	9.0mm ID	22.0mm ID
13	Guard Column	50	SP4016	043018	SP4511	SP4513
	HPLC Column	250	SP3686	043010	043011	SP2091

Sample:

Oligonucleotides

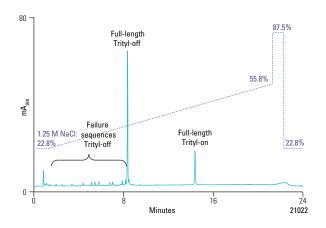
Column: DNAPac PA100 Eluent: 410-510mM NaCl in 25mM Tris-Cl, pH 8.0 Flow Rate: 1.5mL/min Detection: UV, 260mm

pd(A)

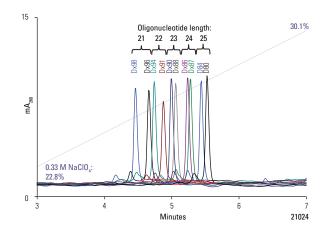
DNAPac PA200

The DNAPac PA200 is a strong anion exchange column developed to provide bestresolution for analysis and purification of synthetic oligonucleotides

- Industry leading resolution for oligonucleotide separations
- Achieve n, n-1 resolution for oligonucleotides
- Resolve oligonucleotides with secondary structures
- Assay phosphorothioate purity
- · Selectivity control with eluent pH, salt, and solvent
- Resolve RNA with aberrant (2', 5') links from normal SS-RNA
- Separate individual phosphorothioate diastereoisomers
- HR/AM AXLC/MS via automated desalting



The DNAPac PA200 is packed with a pellicular anion-exchange resin composed of an 8 μ m diameter nonporous polymeric substrate to which quaternary amine-functionalized Dionex MicroBeads are bound. The rapid mass transport characteristics of this resin result in high-resolution oligonucleotide separations. DNAPac PA200 can resolve full length from n–1, n+1, and other failure sequences not possible with other columns.


DNAPac PA200 Ordering Guide

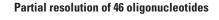
Particle Size (µm)	Format	Length (mm)	2.0mm ID	4.0mm ID	9.0mm ID	22.0mm ID
8	Guard Column	50	063423	062998	063419	SP6731
	HPLC Column	250	063425	063000	063421	SP6734

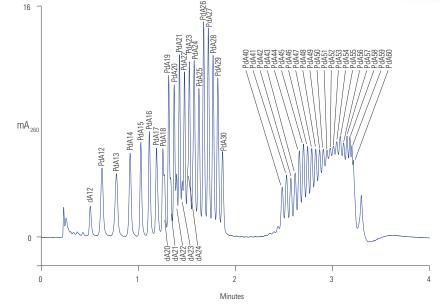
Target, failure and trityl-on oligonucleotides

Separation of oligonucleotides by length

Column: DNAPac® PA200

Eluent:	NaCIO,, pH 6.5
	with 20% CH ₂ CN
Flow Rate:	1.2mL/min
Inj. Volume:	8µL
Detection:	UV, 260nm


DNAPac PA200 RS


UHPLC Solutions for Nucleic Acid Analysis

DNAPac PA200 RS columns are packed with smaller, 4 µm particles, for improved resolution and better performance. The smaller particles also allow shorter columns to provide significantly higher throughput. These columns are packed in bioinert PEEK-lined stainless steel (SST) bodies, designed to protect from unwanted interactions of eluents and analytes with metals, while maintaining 10,000 psi stability. They columns offer exceptional resolution of oligonucleotides, including isomer separations; and are able to resolve full length oligonucleotides from n-1 and n+1 oligonucleotides and other failure sequences.

- Provide single base resolution of oligonucleotides
- Higher efficiency to improve resolution
- Improved throughput
- Ruggedness consistent with the DNAPac PA200 column line.
- 10,000 psi stable

Column: DNAPac PA200 RS, 4.6 x 50mm

Eluent: A	20 mM Tris pH 8	
Eluent B:	A + 1.25 M NaCl	
Temp:	30 °C	
Flow Rate:	1.30 mL/min	
lnj. (μL):	2.5 μL	
Detection:	28-43% B in 4 CV*	
	(2.56 min) curve 3**	
Sample:	PdA12-30, 40-60	

*CV = column volumes **Curve 3 indicates continuously changing gradient, asymptotically approaching a maximum salt concentration. Programed in Chromeleon 6.8.

DNAPac PA200 RS Ordering Guide

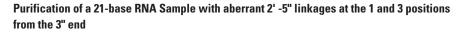
Particle Size (µm)	Format	Length (mm)	4.6 mm ID
4	BioRS column	50	082508
		150	082509
		250	082510

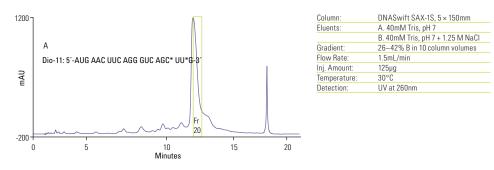
DNASwift SAX-1S

A strong anion exchange monolith column that provides improved capacity and industry-leading oligonucleotide yield-purity performance.

This semipreparative column incorporates selectivity control of the DNAPac column, providing unsurpassed purity and yields.


- Micromole purifications in a 5cm column body
- Substantial capacity in a small format
- Tunable selectivity control, the DNAPac columns, for high resolution
- Compatible with high pH mobile phases, solvents, or high temperatures
- Ideal for therapeutic and diagnostic oligonucleotide research
- Purify difficult oligonucleotide products
- Use in combination with the DNAPac for industry leading purification and characterisation of oligonucleotide products

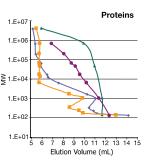

The DNASwift column is a unique porous polymer monolith coated with functionalized latex nanobeads, optimized for oligonucleotide separations. The monolith, a polymer cylinder with interconnected flow through channels, provides fast mass transfer, low back pressure (for increased flow rates), very high capacity, and refined selectivity control.

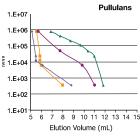

DNASwift SAX-1S Ordering Guide

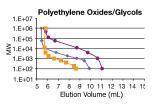
Functional Group	Length (mm)	5.0mm ID	
SAX-1S	150	066766	

Tritylated oligonucleotide

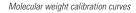
Notes

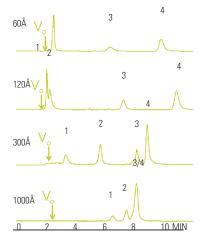

BioBasic SEC Columns


Superior separation of water soluble compounds


- Covers separation of analytes over a wide molecular weight range
- Long column life and high column efficiencies
- Simple mechanism of interaction based on molecular size and shape
- Ideal for sample clean-up
- Straightforward method development, simple mobile phases

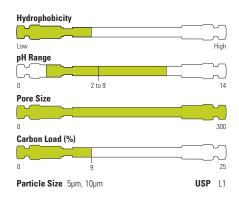
BioBasic SEC Ordering Guide


Pore Size (Å)	Description	ID (mm)	Length (mm)	Cat. No.
BioBasic SEC 60				
60	Guard	7.8	30	73305-037821
	HPLC Column	7.8	150	73305-157846
	HPLC Column	7.8	300	73305-307846
BioBasic SEC 120)			
120	Guard	7.8	30	73405-037821
	HPLC Column	7.8	150	73405-157846
	HPLC Column	7.8	300	73405-307846
BioBasic SEC 300)			
300	Guard	7.8	30	73505-037821
	HPLC Column	7.8	150	73505-157846
	HPLC Column	7.8	300	73505-307846
BioBasic SEC 100)0			
1000	Guard	7.8	30	73605-037821
	HPLC Column	7.8	150	73605-157846
	HPLC Column	7.8	300	73605-307846



BioBasic SEC,				
60A	- → 300Â			
→-120Å	<u>→</u> 1000Å			

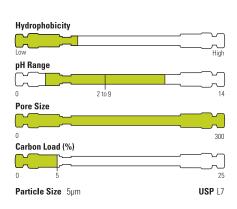
1/2


Columns: BioBasic SEC, 5µm, 300 x 7.8mm			
Eluent:	0.1M KH ₂ PO ₄ pH 7		
Flow:	1.0mL/min		
Detector:	UV at 254nm		
Injection:	20µL		
Sample:	1. Thyroglobulin (MW669,00) 2. Ovalbumin (MW 45,000) 3. Angiotensin II (MW 1,046) 4. PABA (V _m) (MW 137)		

Effect of pore size on SEC resolution

BioBasic 18

Outstanding separation of small to medium peptides


- 300Å pore size for maximum performance with biomolecules
- High peak capacity stationary phase
- Outstanding reproducibility, efficiency and column lifetime
- Excellent for LC-MS separations

BioBasic 8

Optimized for the separation of a wide range of peptides

- 300Å pore size for improved biomolecule analysis
- An excellent starting column for protein and peptide analysis
- Outstanding reproducibility, efficiency and column lifetime
- Excellent for LC-MS separations

BioBasic 4

- Based on 300Å silica for outstanding biomolecule performance
- Lower carbon load for optimal retention of larger peptides and proteins
- Outstanding reproducibility, efficiency and column lifetime
- Excellent for LC-MS separations

Hydrophobicity	
Low	ـــــــــــــــــــــــــــــــــــــ
pH Range	
0 2 to 9	
	14
Pore Size	_
· · · · · · · · · · · · · · · · · · ·	
0	300
Carbon Load (%)	
0 4	25
Particle Size 5µm	USP L26

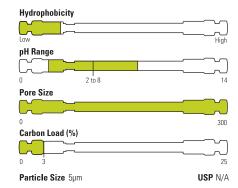
BioBasic AX

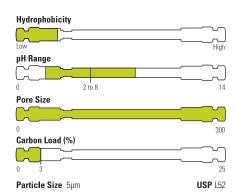
Optimized for the separation of proteins, peptides, other anionic species and polar molecules

- Weak anion exchange phase for multiple charged species
- 300Å pore size for enhanced protein and peptide separations
- Suitable for HILIC retention and separation of highly polar molecules
- Superb stability under demanding pH conditions

BioBasic SCX

For the separation of proteins, peptides, and other cationic species


- Strong cation exchange phase based on sulfonic acid chemistry
- Separation and retention of basic and other cationic species
- 300Å pore size for enhanced protein and peptide separations

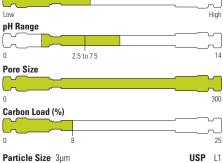

Law white

• Outstanding stability under demanding pH conditions

BioBasic	Ordering	Guide
BIOBUOIO	oraoring	Guiuo

Dentiale

Particle Size (µm)	Format	Length (mm)	ID (mm)	C18	C8	C4	AX	SCX
5 Drop-in Guard 10 (4/pk)	10	1.0	72105-011001	72205-011001	72305-011001	73105-011001	73205-011001	
		2.1	72105-012101	72205-012101	72305-012101	73105-012101	73205-012101	
			3.0	72105-013001	72205-013001	72305-013001	73105-013001	73205-013001
			4.0/4.6	72105-014001	72205-014001	72305-014001	73105-014001	73205-014001
	HPLC Column	50	1.0	72105-051030	72205-051030	72305-051030	73105-051030	73205-051030
			2.1	72105-052130	72205-052130	72305-052130	73105-052130	73205-052130
			3.0	-	-	-	73105-053030	73205-053030
		4.6	-	-	-	73105-054630	73205-054630	
	1(100	1.0	72105-101030	72205-101030	72305-101030	73105-101030	73205-101030
			2.1	72105-102130	72205-102130	72305-102130	73105-102130	73205-102130
			3.0	72105-103030	72205-103030	72305-103030	73105-103030	73205-103030
		4.6	72105-104630	72205-104630	72305-104630	73105-104630	73205-104630	
		150	1.0	72105-151030	72205-151030	72305-151030	73105-151030	73205-151030
			2.1	72105-152130	72205-152130	72305-152130	73105-152130	73205-152130
			3.0	-	-	-	73105-153030	73205-153030
			4.6	72105-154630	72205-154630	72305-154630	73105-154630	73205-154630
		250 1.0	1.0	72105-251030	72205-251030	72305-251030	73105-251030	73205-251030
			2.1	72105-252130	72205-252130	72305-252130	73105-252130	73205-252130
			4.6	72105-254630	72205-254630	72305-254630	73105-254630	73205-254630

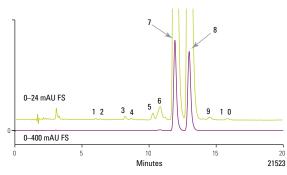

Format	Length (mm)	ID (mm)	Cat. No.
UNIGUARD Guard	10	1.0	851-00
Cartridge Holder		2.1	852-00
		3.0	852-00
		4.0/4.6	850-00

Acclaim 300 C18

High-resolution reversed-phase separation of proteins and peptides

- Designed for high-resolution peptide mapping and protein separations
- High-efficiency 3µm spherical silica substrate
- High-performance bonding chemistry on 300Å pore silica
- Application tested for suitability in peptide mapping
- Reproducible for dependable results
- LC-MS compatible
- Ultrapure silica with low metal content and exhaustive bonding and endcapping

Hydrophobicity


Acclaim 300 C18 Ordering Guide

Particle Size (µm)	Format	Length (mm)	2.1mm ID	3.0mm ID	4.6mm ID
3	HPLC Column	50	060263	-	060265
		150	060264	063684	060266
5	Guard Cartridges (2/pk)	10	069690	075721	069697

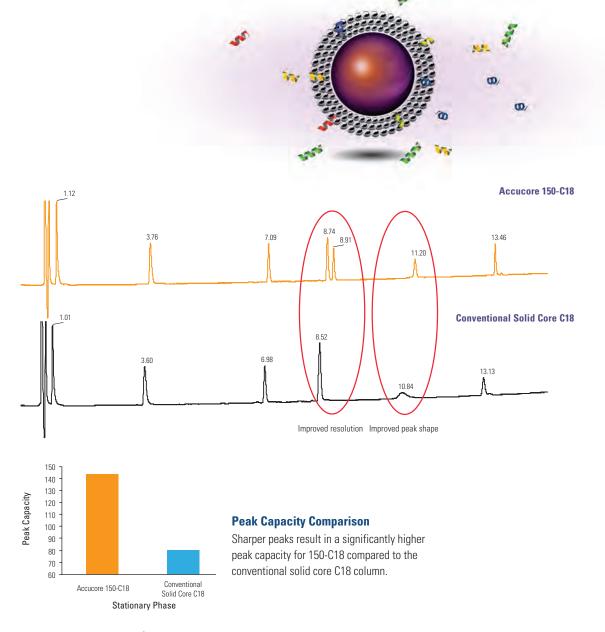
Acclaim Guard Holder Ordering Guide

Description	Cat. No.
Acclaim SST Guard Cartridge Holder V-2	069580
Acclaim Guard Kit (Holder and coupler) V-2	069707
Guard to Analytical Column Coupler V-2	074188

Budesonide and related substances

Column: Acclaim 300 C18 3.0µm, 4.6 x 150mm

Pump:	Summit P580 HPG/4
Mobile Phase:	(A) Acetonitrile:ethanol 15:1 (B) 0.1% phosphoric acid Isocratic 66% B
Flow:	1.0mL/min
Temperature:	30°C
Injection:	ASI-100 autosampler, 15µL
Detector:	UVD 340U; UV at 240nm
Sample:	Budesonide, 500µg/mL after three days
Peaks:	7, 8. Budesonide epimers, 99%


Reference: Hou S, Hindle M, Byron PR; J. Pharm. Biomed. Analy. 2001 24:371-80.

Accucore Columns for Biomolecules

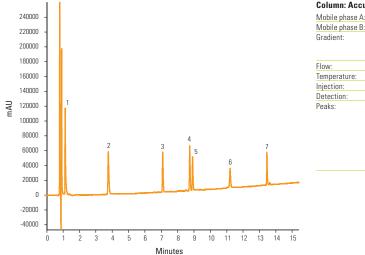
Ultimate Core Performance for Biomolecule Separations

The range of Accucore HPLC columns packed with 150Å pore diameter particles allow biomolecule separations to benefit from the superb resolution and high speed enabled by the Core Enhanced Technology[™] that Accucore columns are based on. The 150Å pore diameter solid core particles used in the Accucore 150-C18, 150-C4 and 150-Amide-HILIC columns are designed specifically to provide the optimum combination of retention and resolution for biomolecules.

The chromatograms below show the improved resolution and peak shapes achieved with Accucore 150-C18 compared to a C18 solid core phase with an 80Å pore diameter.

Accucore 2.6µm 150Å HPLC and nanoLC Columns Optimum Conditions and Ratings

Column ID	Optimum Flow Rate	Backpressure Rating	Temperature Rating
75µm	300nL/min	800 bar	70°C
2.1mm	400µL/min	1000 bar	70°C
3.0mm	800µL/min	1000 bar	70°C
4.6mm	1800µL/min	1000 bar	70°C


- Designed for the separation of peptides
- Outstanding resolution
- 150Å pore diameter material

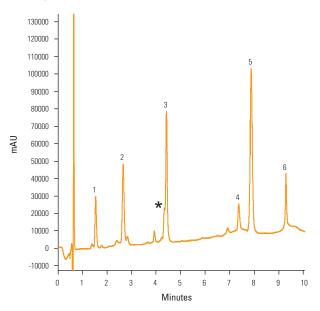
Higher peak capacities facilitate increased peptide identifications. Accucore 150-C18 provides much narrower peak widths, therefore significantly higher peak capacity than a column packed with $<2\mu$ m wide pore fully porous C18.

Precision of retention times is critical for reliable analysis. The Accucore 150-C18 column exhibits excellent retention time reproducibility.

Hydrophobicity Low pH Range 0 1 to 11 14 Pore Size 0 150Å 300 Carbon Load (%) 0 7 25 Particle Size 2.6µm USP L1

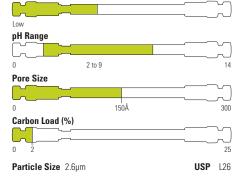
Peptide separations

Column: Accucore 150-C18 2.6µm, 100 x 2.1mm


	16 130-010 2.0µm, 100 x 2.1mm
obile phase A:	0.1% TFA in 10:90 acetonitrile:water
obile phase B:	0.1% TFA in 70:30 acetonitrile:water
adient:	0-50% B over 15 min; hold for 2 min;
	drop to 0% in 0.1 min; hold at 0% B
	for 5 min
W:	300µL/min
mperature:	35°C
ection:	5µL
tection:	UV (220nm)
aks:	1. Glycine-Tyrosine
	2 . Valine-Tyrosine-Valine
	3. Met-Enkephalin
	4. Angiotensin III
	5. Leu-Enkephalin
	6. Ribonuclease A
	7. Insulin

Accucore 150-C4

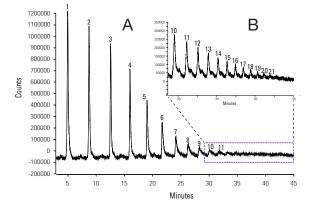
- Significantly lower hydrophobic retention than C18
- Ideal for retention of proteins and larger peptides


Accucore 150-C4 provides significantly sharper and higher peaks than a column packed with 5µm wide pore fully porous C4, thus offering better resolution and sensitivity. The Accucore 150-C4 also performs better than a column packed with <2µm wide pore fully porous C4 and generates only a fraction of the backpressure.

Intact proteins

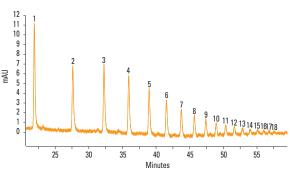
Mobile phase A:	0.1% TFA in 30:70 acetonitrile:water
Mobile phase B:	0.1% TFA in 98:2 acetonitrile:water
Gradient:	0-30% B over 8 mins
	30-95% B over 2 mins
	95% B hold for 1 min
	0% B hold for 4 mins
Flow:	400µL/min
Temperature:	40°C
Injection:	2µL 10pmol/µL solution
Detection:	UV (214 and 280nm)
Peaks:	1. Insulin
	2. Cytochrome C
	3. Lysozyme
	4. Myoglobin
	5. Carbonic anhydrase
	6. Ovalbumin
	* Carbonic anhydrase impurity

Hydrophobicity



Accucore 150-Amide-HILIC

- Amide phase bonded onto 150 Å pore diameter solid core particles
- High retention of a broad range of hydrophilic analytes in HILIC mode
- · Recommended for hydrophilic biomolecules such as glycans


The amide bonded phases provide strong hydrogen bonding interaction between the stationary phase and the analytes, resulting in unique selectivity compared to other HILIC phases. Combined with larger pore size of the solid core particles, Accucore 150-Amide-HILIC is well suited for separating a variety of hydrophilic molecules, including carbohydrates and peptides. As a result the Accucore 150-Amide-HILIC is an excellent choice for glycan separations.

2-AB labelled dextran ladder

(A) 2 µL injection of sample, where 11 glycans were separated.

(B) 5 μ L injection of sample, zoomed-in to the later part of the gradient rise. A further 10 glycans were detected

2-AB labelled dextran ladder

Hydrophobicity

Particle Size 2.6µm

Column: Accucore 150-Amide-HILIC, 2.6µm, 100 x 2.1mm

Mobile phase A:	acetonitrile
Mobile phase B:	50 mM ammonium formate, pH 4.5
Gradient:	20–50 % B in 40.0 minutes
	50 % B for 5.0 minutes
	50–20 % B in 0.5 minutes
	50 % B for 4.5 minutes
Flow:	500 µL/min
Backpressure at	
starting conditions	: 110 bar
Run time:	50 minutes
Temperature:	60 °C
Injection:	2µL to 5µL of sample.
Injection wash	
solvent:	80:20 (v/v) acetonitrile:water.
Fluorescence detect	tor
acquisition parame	ters: 330nm excitation wavelength; 420nm

emission wavelength; acquisition start after 3 min from gradient start.

Column: Accucore 150-Amide-HILIC 2.6µm, 150mm x 75um

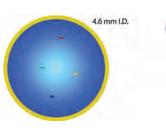
Mobile phase A:	98:2 (v/v) acetonitrile: water	
Mobile phase B:	2:98 (v/v) acetonitrile: water	
Gradient:	0–50 %B in 50 minutes	
	50 % B for 8 minutes	
Flow:	200 nL/min	
Temperature:	40 °C	
Backpressure:	60 bar (100% A)	
Sample Pick-up:	0.5µL at 20 µL/min	
Sample Loading:	1µL at 280 bar	
Detection:	UV (240 and 33 nm)	

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Accucore Columns for Biomolecules Ordering Guide

Particle Size (µm)	Format	Length (mm)	ID (mm)	150-C18	150-C4	150-Amide-HILIC
2.6	Defender Guard	10	2.1	16126-012105	16526-012105	16726-012105
(4/	(4/pk)		3.0	16126-013005	16526-013005	16726-013005
			4.6	16126-014005	16526-014005	16726-014005
	HPLC Column	30	2.1	16126-032130	16526-032130	-
			3.0	16126-033030	16526-033030	-
			4.6	16126-034630	16526-034630	-
		50	2.1	16126-052130	16526-052130	16726-052130
			3.0	16126-053030	16526-053030	16726-053030
			4.6	16126-054630	16526-054630	16726-054630
		100	2.1	16126-102130	16526-102130	16726-102130
			3.0	16126-103030	16526-103030	16726-103030
			4.6	16126-104630	16526-104630	16726-104630
		150	2.1	16126-152130	16526-152130	16726-152130
			3.0	16126-153030	16526-153030	16726-153030
			4.6	16126-154630	16526-154630	16726-154630
		250	2.1	-	-	16726-252130

Format	Length (mm)	ID (mm)	Cat. No.
UNIGUARD Guard Cartridge Holder	10	2.1	852-00
		3.0	852-00
		4.6	850-00


Nano, Capillary and Micro LC Columns

Introduction

Nano, capillary and micro columns are ideal in cases where the sample amount is limited. The (theoretical) sensitivity increase of these LC columns is obtained by introducing the limited sample amounts in an environment with a low internal volume. This will result in a sensitivity gain that is dependent on the internal diameter, as shown in the table below. The best known use is the application of nano LC columns in proteomics, but certainly the concentrating effects of capillary and micro columns are beneficial in e.g. metabolomics or facilitation of LC-MS interfacing.

			Load
Name	Internal Diameter	Theoretical Sensitivity	Predominant application area
Conventional	4.6mm	1	Small molecules, pharma
Narrowbore	2.1mm	5	DMPK, Metabolomics, LC-MS
Micro	1.0mm	21	Protein prefractionation
Capillary	300µm	235	Peptide prefractionation
Nano	75µm	3761	Proteomics

Sensitivity

Formats

Our columns come in a variety of formats. We offer most chemistries in nano (75µm), capillary (300µm) and micro (1000µm) internal diameter. In addition, different lengths are available to allow tuning for throughput with short micro columns or high resolution and sensitivity with 50cm long nano columns. However most importantly, Thermo Scientific[™] Dionex[™] nanoViper[™] fingertight fitting system has now become the standard column format for our nano, capillary, and micro LC columns. nanoViper fingertight connections eliminate the assembly of PEEK sleeve connections, allowing tool-free nano-LC connections. They are capable of withstanding pressures up to a 1000 bar, offering the same levels of performance with improved ease of use.

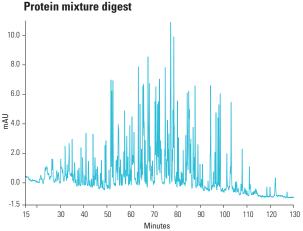
Our trap columns come in two formats as well, the nano trap design, features a single capillary with the trap column at the end. These are ideal for high resolution separation of relatively clean samples or samples with hydrophilic peptides. The cartridge based trap columns are use at higher flow rates and have a wider ID. These are ideal for large sample amounts and when sample quality demands more robustness. For more details on trap columns, please check the RSLCnano standard applications manual.

Thermo Scientific EASY-Spray columns minimize the impact of dead volumes through the use of specifically designed columns in which the separation column, column heater, high-voltage electrode, and emitter are integrated in a ready-made assembly which incorporates a nanoViper connector. Eliminating imperfect connections makes it far easier to achieve state-of-the-art nanospray performance and data.

Chemistries

The most common "sample limited" sources are from biological origin and involve the analysis of peptides and proteins. It is for that reason that our nano, capillary and micro column portfolio has a strong focus on column chemistries for peptides and proteins. The Acclaim PepMap range (C18, C8, C4) has been the benchmark for nano LC peptide analysis for many years. The Acclaim PepMap RSLC (C18, 2µm particle) range builds on this heritage improving peptide separation capabilities. Acclaim PepMap columns are available in 100 and 300Å pore size to accommodate a wide range of peptides and proteins. In addition to these hallmark columns our range also includes monolithic columns that are capable of separating both proteins and peptides with very high efficiency. Our portfolio is completed by a selection of columns that are applicable as the first dimension in a multidimensional approach.

0.075 mm I.D.


Thermo Scientific Chromatography Columns and Consumables 2014-2015

Acclaim PepMap C18 100Å

The standard for peptide separations in proteomics

- High resolution protein identification for biomarker discovery, verification or any other analysis
- Highest sensitivity in LC-MS
- Quality control by factory testing all columns

Acclaim PepMap and Acclaim PepMap RSLC columns are specially designed for high-resolution analyses of tryptic, natural, and synthetic peptides. The columns are often applied for LC-MS/MS peptide mapping for protein identification, biomarker discovery, and systems biology. Due to their high loading capacity, the columns are exceptionally suitable for the analysis of low abundant peptides in complex proteomics samples.

Column: Accla (75um ID x 50c	aim PepMap C18 3µm :m)
Flow Rate:	300 nL/min
Mobile Phase:	A: water + 0.1% formic acid B: water/acetonitrile 20/80 v/v% + 0.08% formic acid
Gradient:	4–55% B in 120min, 5 min wash
Detection:	UV, 214nm
Sample:	Protein mixture digest
Temperature:	35°C

Acclaim PepMap C8, 100Å

An excellent alternative to Acclaim PepMap 100Å C18, when separating very hydrophobic peptides (e.g., non-tryptic peptides)

Acclaim PepMap C4, 300Å

Ideal for the separation of larger hydrophobic peptides and proteins, providing higher recoveries

Acclaim PepMap C18, 300Å

Wide pore version allows larger peptides and proteins

Accucore 150-C18

Designed to give narrow peaks and high peak capacity for peptide separations

Accucore 150-C4

Ideal for high resolution protein separations

Accucore 150-Amide-HILIC

Well suited for separating a variety of hydrophilic molecules, including carbohydrates and peptides

Separation Columns

Acclaim PepMap C18 100Å Ordering Guide

			nano ^v	Viper Column		Classic Column
Particle size (µm)	Length (mm)	50µm ID	75µm ID	300µm ID	1000µm ID	75µm ID
2	50	164561	164563	164560	164454	-
	150	164562	164534	164537	164711	-
	250	164709	164536	-	-	-
	500	164710	164540	-	-	-
3	50	164712	164567	164716	164717	
	150	164713	164568	164571	164572	160321
	250	164714	164569	-	-	164261
	500	164715	164570	-	-	-
5	50	-	_	164901	164899	-
	150	_	_	164902	164900	160323
	250	-	_	_	_	160326

Acclaim PepMap C8 100Å Ordering Guide

			nanoViper Column				
Particle size (µm)	Length (mm)	50µm ID	75µm ID	300µm ID	1000µm ID	75µm ID	
3	150	-	164706	164722	164723	161185	

Acclaim PepMap C4 300Å Ordering Guide

			nanoViper Column				
Particle size (µm)	Length (mm)	50µm ID	75µm ID	300µm ID	1000µm ID	75µm ID	
5	150	-	164707	164720	164721	163579	

Acclaim PepMap C18 300 Å Ordering Guide

			nano	/iper Column		Classic Column
Particle size (µm)	Length (mm)	50µm ID	75µm ID	300µm ID	1000µm ID	75µm ID
5	150	-	164708	164718	164719	163574

Accucore 150-C18 Ordering Guide

		nanoViper Column
Particle size (µm)	Length (mm)	75µm ID
2.6	150	16126-157569
	500	16126-507569

Accucore 150-C4 Ordering Guide

		nanoViper Column
Particle size (µm)	Length (mm)	75µm ID
2.6	150	16526-157569
	500	16526-507569

Accucore 150-Amide-HILIC Ordering Guide

		nanoViper Column
Particle size (µm)	Length (mm)	75μm ID
2.6	150	16726-157569

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Trap columns – nano trap design

Туре	Part number	Particle Size	ID	Bed Length (mm)	Total Length	Quantity
nanoViper Column	164535	3	75	20	150	2
	164705	3	75	20	70	2
	164564	5	100	20	150	2
Classic Column	164197	5	100	10	150	2
	164199	5	100	20	150	2
	164213	5	200	20	150	2

Acclaim PepMap C18 100Å Ordering Guide

Note: 164705 is a shorter total length used for vented column set up for example with EASY nLC 1000

Trap Columns – Cartridge (Set of 5)

Acclaim PepMap C18 100Å Ordering Guide

Length (mm)	300µm ID	1000µm ID
5	160454	160434
15	-	160438

Acclaim PepMap C8 100Å Ordering Guide

Length (mm)	300µm ID	
5	161194	

Acclaim PepMap C4 300Å Ordering Guide

Length (mm) 300µm ID	
5 163591	

Acclaim PepMap C18 300Å Ordering Guide

Length (mm) 300µm ID 163589 5

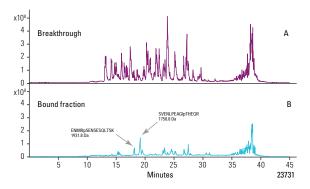
Accucore 150-	C18 Ordering Guide
Length (mm)	300µm ID
5	16126-900379

Accucore 150)-C4 Ordering Guide	
Length (mm)	300µm ID	
5	16526-900379	

Accucore 150	-Amide-HILIC Ordering Guide
Length (mm)	300µm ID
5	16726-900379

µ-Precolumn[™] holder, 5mm, with 30µm ID connecting tubing, nanoViper fittings

Length (mm)	300µm ID	
5	164649	


1st dimension columns for 2D separations

Improving separation efficiency can be achieved by adding a column to the setup for multidimensional analysis. There are dedicated application kits which utilize either SCX or RP as the first dimension. A TiO2 trapping column can be added to the application for phosphopeptide analysis. Check the RSLCnano standard applications manual on the Thermo Scientific website for more information on 2D separations.

1st dimension columns Ordering Guide

Chemistry	Part Number	Description	Application
SCX 164565		300µm ID x 10cm, packed with Poros 10 S, nanoViper column	2D Salt plugs (6720.0325)
	164566	1.0mm ID x 15cm, packed with Polysulfoethyl ASP, 5µm, 300Å, nanoViper column	Automated off-line 2D LC of Peptides, micro SCX x nano RP (6720.0330)
RP	164592	300µm ID x 15cm, packed with Acclaim PA2, nanoViper column	Automated off-line 2D LC, Cap RP (basic) x Nan RP (acidic) (6720.0335)
TiO2	164205	100µm ID x 1cm packed with TiO2	Phosphopeptide analysis
	164215	200µm ID x 1cm packed with TiO2	Phosphopeptide analysis

Isolation of two synthethic phosphopeptides from a BSA tryptic digest

Trap Column: 200µm ID x 1cm, packed with TiO₂, 5µm 100µm ID x 1cm, packed with Acclaim PepMap C18, 5µm

TOODHILLD X LCIII	i, packeu with Acciant repinap cio, spin
Separation Colum	n: Acclaim PepMap C18, 3µm
Dimensions:	75µm x 15cm
Loading Solvent:	0.05% HFBA in DI H ₂ 0
Wash Solvent:	0.01% HFBA in DI H,0
Mobile Phases:	(A) 0.05% TFA in DI H ₂ 0 (B) 0.04% TFA in acetronitrile/
	DI H ₂ O (80:20 v/v)
Gradient:	3–40% acetronitrile in 30 min
TiO, Trap Eluent:	250mM NH, HCO, in DI H, O, pH 9.0
Flow Rate:	300nL/min
Loading Flow:	8µL/min
Inj. Volume:	5µL
Detection:	MS

Thermo Scientific Chromatography Columns and Consumables 2014-2015

EASY-Spray Columns

Nanoflow LC-MS utilizes very narrow fused silica columns and as a result, even the slightest inconsistency in column connection can result in leaks and dead volumes and are a frequent source of poor data, causing unstable spray and a significant loss in performance. Trouble-shooting connection issues can be difficult and time consuming, even for experts.

Thermo Scientific[™] EASY-Spray[™] columns address the aforementioned issues by incorporating high-performance nanobore columns and integrating them within a radical new design.

Packed with either C18 for peptide separations or with selected wide pore phases and monoliths for the separation of intact proteins, e.g. top-down proteomics or the structural identification of biotherapeutics, the "plug and spray" approach delivers state of the art performance in a simple to use format, making research routine.

Acclaim PepMap C18 100Å Ordering Guide

Particle size (µm)	Length (mm)	50µm ID	75µm ID
2 150		ES801	-
	250	-	ES802
	500	-	ES803
3	150	-	ES800

Accucore C4 150Å Ordering Guide

Particle size (µm)	Length (mm)		75µm ID
2.6	150	-	ES811

Acclaim PepMap C18 300Å Ordering Guide

Particle size (µm)	Length (mm)		75µm ID
5	150	-	ES812

PepSwift Ordering Guide

Length (mm)		200µm ID
250	-	ES810

EASY-Spray Emitters

EASY-Spray emitters are integrated devices consisting of a sprayer coupled with a transfer line. The EASY-Spray benefits of pre-made connections, as well as the easy installation in the MS ion source can now be exploited in cases where no chromatography is required, for example when tuning the mass spectrometer.

EASY-Spray Emitters Ordering Guide

Description	Cat. No.
EASY-Spray emitter, nanoflow (Emitter ID 7µm, Transfer line ID 20µm, Transfer line length 500mm)	ES791
EASY-Spray emitter, microflow (Emitter ID 20µm, Transfer line ID 75µm, Transfer line length 500mm)	ES792

PepSwift and ProSwift (PS-DVB) Capillary and Micro HPLC Columns

- High-resolution for protein identification, biomarker discovery, and systems biology
- High-speed peptide and protein separations (<15 min)
- Highest sensitivity for LC/MS
- Highest column-to-column reproducibility
- Wide range of column IDs and lengths available
- Superior lifetime
- nanoViper fittings for easy column installation

PepSwift and ProSwift monolithic columns are specially designed for fast and high-resolution LC/MS analysis in protein identification, biomarker discovery, and systems biology. Based on a polystyrene divinylbenzene copolymer, the monolithic structure offers a high-quality alternative to traditional microparticulate sorbents, providing important advantages to the chromatographic separation. High-sensitivity proteomics and biotech applications are easily performed using these columns.

PepSwift Precolumns can be used for preconcentration and desalting of samples consisting of peptides and proteins without negative impact on the chromatographic performance or recovery of the compounds. Various ion-pairing agents can be used in the loading solvent and/or mobile phases to change the selectivity of the separation or improve the trapping efficiency.

PepSwift and ProSwift, nanoViper Ordering Guide

		PepSwift		
Length (mm)	100µm ID	200µm ID	500µm ID	1000µm ID
5	-	164558	-	-
50	164584	164557	164585	164586
250	164543	164542	_	-

EASY-Columns

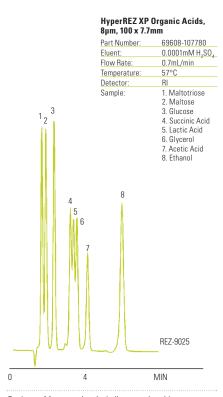
Excellence in nanoscale separations

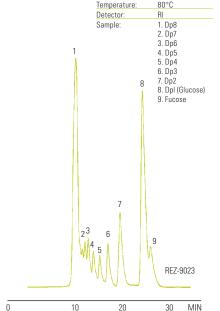
- Compatible with any nanoscale HPLC system
- Optimized for online LC-MS
- Quality control on every column
- Simple, flexible design

Using highly pure chromatographic media and biocompatible, metal-free fused silica capillaries, Thermo Scientific[™] EASY-Column[™] capillary LC columns are produced with a focus on design simplicity and strict quality control. As a result, EASY-Column capillary LC columns deliver outstanding chromatographic performance on any nano LC system.

EASY-Columns Ordering Guide

Description	Quantity	Cat. No.
EASY-Column, 2cm, ID 100µm, 5µm, C18-A1 (Trap column)	3	SC001
EASY-Column, 10cm, ID 75µm, 3µm, C18-A2 (Analytical column)	1	SC200
EASY-Column, 10cm, ID 75µm, 3µm, C18-A2 (Analytical column)	3	SC2003
HPLC-to-Column Connector kit Zero-dead-volume union (1/32in OD tubing), 10x SC603	1	SC600
A/B mixing tee & Venting Tee for two-column setup Nanoliter-dead-volume tee (1/32in OD tubing), 10 sleeves for 360µm OD fused silica (10xSC603).	1	SC601
Connector Kit for two-column setup Zero-dead-volume union (1/32in OD tubing), Nanoliter-dead-volume tee (1/32 inch OD tubing), 10x SC603	1	SC602
Sleeves (2cm, 1/32in OD) for 360µm OD fused silica	30	SC603




HyperREZ XP

Polymer-based columns for carbohydrate analysis

- Designed for the determination of carbohydrates, saccharides, organic acids, and alcohols
- Efficient and reproducible monodisperse particles
- Stable for long column lifetimes even at low pH and high temperatures

Thermo Scientific[™] HyperREZ[™] XP Carbohydrate columns are based on a monodisperse resin with a 4 or 8% divinylbenzene content, and provide an ideal medium for the analysis of carbohydrates and organic acids. Unlike silica based columns they are stable at low pH, allowing the use of dilute acid as a mobile phase. The columns can also be run at elevated temperatures, for faster analysis and improved resolution of some closely eluting analytes. The columns can easily be regenerated for increased column lifetime. Control of the degree of cross-linking of the gel provides a size exclusion mode of operation in addition to the ligand exchange interactions with the metal ion associated with the sulfonated resin. Selectivity differences arise from the interactions of the different counter-ion forms with the hydroxyl groups on the analyte molecules. HyperREZ XP columns are available in H⁺, Ca²⁺, Pb²⁺, and Na⁺ forms, enabling you to choose the appropriate counter-ion to meet your application requirements. Refer to the tables below to help choose the best column based on application area or retention times. HyperREZ XP columns are also available in dedicated organic acid and sugar alcohol forms.

Hydrophobicity

Particle Size 8µm, 10µm

1 to 11

HyperREZ XP Carbohydrate Na⁺,

69310-307780

0.3mL/min

H₂0

10um, 300 x 7.7mm

Part Number:

Eluent:

Flow Rate

pH Range

Products of fermentation, including organic acids, sugars and alcohols, can be separated using a HyperREZ XP Organic Acids column Analysis of sports drink using a HyperREZ XP Carbohydrate Na⁺ column

Phase	Particle Size (µm)	Porosity
HyperREZ XP Carbohydrate H ⁺ Counter-ion	8	8% cross linkage
HyperREZ XP Carbohydrate Pb ²⁺ Counter-ion	8	8% cross linkage
HyperREZ XP Carbohydrate Ca ²⁺ Counter-ion	8	8% cross linkage
HyperREZ XP Carbohydrate Na ⁺ Counter-ion	10	4% cross linkage
HyperREZ XP Organic Acids	8	8% cross linkage
HyperREZ XP Sugar Alcohols	8	8% cross linkage

Column Type	Application Areas		
HyperREZ XP Ca ²⁺ Adulteration of food & beverages, confectionary, disaccharides, food add			
	Alcohols, dairy products, fermentation, wine		
	Anomer separation		
HyperREZ XP Pb ²⁺	Fruit juice, monosaccharides		
HyperREZ XP H+	Alcohols, dairy products, fermentation, wine		
	Oligosaccharides, glycoprotein constituents, organic acids, fermentation products		
HyperREZ XP Na⁺	Corn syrup		

Thermo Scientific Chromatography Columns and Consumables 2014-2015

HyperREZ XP Ordering Guide

	Particle Size (µm)	Format	Length (mm)	ID (mm)	Cat. No.
HyperREZ XP Carbohydrate H+	8	Guard Cartridge (2/pk)	5	3.0	69008-903027
		Guard Column	50	7.7	69008-057726
		HPLC Column	300	7.7	69008-307780
HyperREZ XP Carbohydrate Ca2+	8	Guard Cartridge (2/pk)	5	3.0	69208-903027
		Guard Column	50	7.7	69208-057726
		HPLC Column	300	7.7	69208-307780
HyperREZ XP Carbohydrate Pb2+	8	Guard Cartridge (2/pk)	5	3.0	69108-903027
		Guard Column	50	7.7	69108-057726
		HPLC Column	300	7.7	69108-307780
HyperREZ XP Carbohydrate Na+	10	Guard Cartridge (2/pk)	5	3.0	69310-903027
		Guard Column	50	7.7	69310-057726
		HPLC Column	300	7.7	69310-307780
HyperREZ XP Organic Acids	8	Guard Cartridge (2/pk)	5	3.0	69008-903027
		Guard Column	_	_	Inquire
		HPLC Column	100	7.7	69608-107780
HyperREZ XP Sugar Alcohols	8	Guard Cartridge (2/pk)	5	3.0	69208-903027
		Guard Column	-	-	Inquire
		HPLC Column	300	7.7	69708-254030
Format			Length (mm)	ID (mm)	Cat. No.

HyperRez Guard Cartridge Holder

Retention Times of Common Saccharides (min)

Saccharide	H+	Ca ²⁺	Pb ²⁺
Adonitol	11.5	14.9	20.4
Arabinose	11.4	13.6	19.4
Erythritol	12.7	15.6	20.3
Fructose	10.6	13.5	19.3
Fucose	12.2	13.7	17.1
Galactose	1.07	12.2	15.6
Glucose	9.9	11.1	13.9
Glycerol	14.1	16.1	19.5
Lactose	8.6	9.7	12.8
Maltose	8.4	9.5	12.5
Maltotriose	7.7	8.7	11.9
Mannitol	11.0	17.3	28.9
Mannose	1.5	12.5	16.7
Raffinose	8.2	8.6	11.4
Sorbitol	11.1	20.7	N/A
Sucrose	9.8	9.4	11.9
Xylose	10.6	12.0	15.0

Conditions:	Column: 300 x 7.7mm
Mobile Phase:	H ₂ O
Flow Rate:	0.6mL/min
Detection:	RI
Temperature:	75°C (H⁺)
85°C (Ca ²⁺)	
80°C (Pb ²⁺)	
Note: partial hyd	rolysis may occur with some
saccharides using	g H+.

5

3

60002-354

Thermo Scientific LC Accessories

Viper Fingertight Fittings

Provides ease of use and dead-volume free plumbing of every conventional HPLC and UHPLC system

- Provides virtually zero-dead volume fingertight connections
- Supports operating pressures up to 1250 bar (18,130 psi)
- Available in different lengths: 65mm and from 150 to 950mm in 100mm steps
- Available in different inner diameters: 0.1mm (0.004in), 0.13mm (0.005in) or 0.18mm (0.007in)
- Easy to use due to stainless steel or biocompatible MP35N $^{\rm M}$ capillaries (1/32in OD) and fingertight design
- · Works with virtually any valve and column from any manufacturer
- Fits narrow connections such as 10-port valves and enables mixed use with different designs

The Thermo Scientific[™] Dionex[™] Viper[™] fingertight fitting system provides ease of use and virtually dead-volume free plumbing of every conventional HPLC and modern UHPLC system. Together with flexible stainless steel (SST) or biocompatible MP35N[®] capillaries, it opens a new dimension in liquid chromatography. The Viper system improves chromatographic results, independent of various different connection geometries and system backpressures. Connecting LC modules, valves, and columns quickly and easily without tools is simple with the Viper system.

Extra column volumes in HPLC have the most detrimental effects on the separation efficiency of an LC system and must be minimized. Conventional fittings tightened by hand or using tools have considerable drawbacks which can compromise efficiency. The Viper fitting system overcomes these drawbacks by design, working without ferrules to reduce the dead volume of any fluidic connection to virtually zero. The Viper system unifies robust performance, ease of use, acceptable lifetime, and universal compatibility with virtually all different valves and columns for HPLC system users. All Thermo Scientific[™] Dionex[™] UltiMate[™] 3000 XRS, RS, BioRS and SD systems are equipped with Viper fingertight fitting system as a standard.

Viper Fingertight Fitting Systems – SST and Biocompatible MP35N

Length (mm)	0.1mm ID, SST	0.1mm ID, MP35N	0.13mm ID, SST	0.18mm ID, SST	0.18mm ID, MP35N
65	6040.2207	6042.2306	6040.2307	6040.2357	-
150	6040.2215	6042.2320	6040.2315	6040.2360	-
250	6040.2225	6042.2330	6040.2325	6040.2385	6042.2315
350	6040.2235	6042.2340	6040.2335	6040.2375	6042.2327
450	6040.2245	6042.2350	6040.2345	6040.2365	6042.2337
550	6040.2255	6042.2360	6040.2305	6040.2355	6042.2365
650	6040.2265	-	6040.2310	6040.2395	-
750	-	-	6040.2320	6040.2370	6042.2355
850	-	-	6040.2330	6040.2380	-
950	-	_	6040.2350	6040.2390	6042.2375

Viper Accessories

Description	Cat. No.	Quantity
Plug, SST	6040.2303	1 Each
Union, SST	6040.2304	1 Each

Columns and Accessories

4-158

Viper Fingertight Fittings Kits for UltiMate 3000 Systems

Viper Fingertight Fitting Kits for UltiMate 3000 systems

Description	SD Systems	RS Systems
Viper Capillary Kit for ISO, LPG or DGP pumps	6040.2302	6040.2301
Viper Capillary Kit for HPG pumps	6040.2309	6040.2308
Viper Capillary Kit for biocompatible RSLC systems	-	6841.2301
On-line SPE Solution Kit for x2 Dual Standard or RSLC systems	6040.2802	6040.2801
Tandem Operation Solution Kit for x2 Dual Standard or RSLC systems	6040.2804	6040.2803
Application Switching Solution Kit for x2 Dual Standard or RSLC systems	6040.2806	6040.2805
Parallel Setup Solution Kit for x2 Dual Standard or RSLC systems	6040.2810	6040.2809
Inverse Gradient Kit for x2 Dual Standard or RSLC systems	6040.2819	6040.2820
Automated Method Scouting Solution Kit for Standard or RSLC systems	6040.2808	6040.2807
MS Connection Kit for MS-frontends with WPS autosampler, excluding UV detection	6720.0355	6720.0370
MS Connection Kit for MS-frontends with WPS autosampler, including UV detection	6720.0365	6720.0375
MS Connection Kit for MS-frontends with HPG-RS pump and OAS autosampler excluding UV detection	-	6720.0372
MS Connection Kit for MS-frontends with HPG-RS pump and OAS autosampler including UV detection	_	6720.0377

Description	XRS Systems
Viper Capillary Kit for standalone system with with WPS autosampler	6043.2301
Viper Capillary Kit for standalone system with with OAS autosampler	6845.2301A
MS Connection Kit for MS-frontends with WPS autosampler excluding UV detection	6720.0380
MS Connection Kit for MS-frontends with WPS autosampler including UV detection	6720.0385
MS Connection Kit for MS-frontends with LPG-XRS pump and OAS autosampler excluding UV detection	6720.0372
MS Connection Kit for MS-frontends with LPG-XRS pump and OAS autosampler including UV detection	6720.0377

An overview of all UltiMate 3000 systems can be found in the Instruments spare parts section on 4-209.


nanoViper Fingertight Fittings

The Thermo Scientific[™] Dionex[™] nanoViper[™] fingertight UHPLC fitting system is virtually dead volume-free by design. It offers nano LC connections that never fail and brings a peace of mind appreciated by novices, as well as the most experienced users.

- Provides virtually zero-dead-volume connections
- Compatible with backpressures up to 1000 bar (14,500 psi)
- Suitable for temperatures up to 80°C
- Easy to use 1/32" PEEK sheathed fused silica and fingertight design
- · Works with virtually any valve, and any column, from any manufacturer
- Paves the way for the easy, tool-free nano, capillary and micro LC setup of any application
- nanoViper fingertight fittings allow you to configure your nano, capillary, and micro LC application completely tool free.

Classical connections in nano LC involve either PEEKsil[™] or fused silica in PEEK[™] sleeves. These connections consist of a nut, ferrule, sleeve, and fused silica, which all need to be assembled correctly. The sealing is at the ferrule, which theoretically leaves a large potential dead volume. Apart from the risk of dead volume (an extreme case indicated above), there is also a risk of damaging the fused silica tubing or column at the point where the ferrule is compressed. The ferrule has to hold the tubing in the sleeve and seal of the connection.

The nanoViper connections come preassembled and high pressure tested. The fittings do not "grab" the tubing at a single point. It seals at the tip and not with a ferrule. Nor does it "grab" the tubing at a single point. It is this feature that gives nanoViper fittings their UHPLC, virtually dead-volume-free capabilities. The theoretical performance effect between the two example chromatograms below is about 20% increase in peak capacity.

nanoViper Fingertight Fittings

Length (mm)	Orange 20µm ID	Brown 50µm ID	Black 75µm ID	Red 100µm ID	Purple 150µm ID
70	6041.5120	6041.5123	6041.5126	6041.5820	6041.5817
150	6041.5121	6041.5124	6041.5127	6041.5811	6041.5818
250	_	-	6041.5730	6041.5812	6041.5819
350	6041.5240	6041.5540	6041.5735	6041.5813	6041.5820
450	_	-	-	6041.5814	6041.5821
550	6041.5260	6041.5560	6041.5760	6041.5815	6041.5822
650	6041.5275	6041.5575	6041.5775	-	-
750	6041.5280	6041.5580	6041.5780	6041.5816	6041.5823
950	6041.5122	6041.5125	6041.5128	-	-

Trap Column Cartridges Holders with nanoViper Fittings

Description	Cartridge Length (mm)	Fitting ID (µm)	Cat. No.
$\mu\text{-}Precolumn$ holder for trap cartridges with 2 x 100mm	5	30	164649
length nanoViper fittings	15	75	164650

Sample Loops with nanoViper Fittings

Volume (µL)	Cat. No. Quantity	
1	6826.2401 1 Each	
5	6826.2405 1 Each	
10	6826.2410 1 Each	
20	6826.2420 1 Each	
50	6826.2450 1 Each	
125	6826.2412 1 Each	

nanoViper Application Kits

nanoViper fittings are also included in tubing and application kits designed for use with the UltiMate 3000 RSLCnano systems.

nanoViper Fitting Kits for UltiMate 3000 RSLCnano Systems

Description	Tubing	Samples	Trap Column	Separation Column	RSLCnano Systems
Direct Injection nano LC Kit	Υ	Y	-	Y	6720.0300
Direct Injection capillary LC Kit	Y	Y	-	Y	6720.0305
Preconcentration nano LC kit	Y	Y	Y	Y	6720.0310
Preconcentration capillary LC kit	Y	Y	Y	Y	6720.0315
Preconcentration monolithic LC kit	Y	Y	Y	Y	6720.0320
2D salt plugs kit	Y	Y	Y	Y	6720.0325
Automated off line SCX-RP peptides kit	Y	Y	Y	Y	6720.0330
Automated off line RP-RP peptides kit	Y	Y	Y	Y	6720.0340
Tandem nano LC kit	Y	Y	Y	Y	6720.0335
FLM nanoViper tubing kit (All tubing for nano LC preconcentration)	Y	-	-	-	6041.5100
MS connection kit	Y	_	-	-	6720.0345
EASY-Spray connection kit (Supports direct injection as well as preconcetration)	Y	Y	Y	-	6720.0395

SLIPFREE Connectors

Universal self-adjusting connections

- Void-free and leak-free by pushing tubing and ferrule into the end-fitting
- Compatible with all column end-fittings
- Stainless-steel threads
- Fingertight connections to 10,000psi

SLIPFREE Connectors, Single

Length (cm) 0.005in ID 0.010in ID 0.020in ID Single 30106 32106 6 31106 10 30110 31110 32110 20 30120 31120 32120 32130 30 30130 31130 50 30150 _ _ **Single Flexible** 10.5 39111-FLEX 30111-FLEX -15 30115-FLEX 39115-FLEX _ 28 30128-FLEX 39128-FLEX ____ 40 30140-FLEX 39140-FLEX -50 30150-FLEX _ _ 60 30160-FLEX _ _ **Single PEEK Collared** 6 30306 32306 31306 10 30310 31310 32310 20 32320 30320 31320 Single Long-neck 10 30510 31510 _ 20 30520 31520 32520

SLIPFREE Ferrules

Cat. No.

36023

36024

36025

Quantity

1 Each

1 Each

1 Each

Material

PEEK

Vespel

Kel-F

SLIPFREE Connectors, Double

		Length (cm)	0.005in ID	0.010in ID	0.020in ID
Double		<u> </u>			
		6	30206	31206	32206
		10	30210	31210	32210
		20	30220	31220	32220
		30	30230	31230	32230
		40	30240	-	-
Double Flexible					
		10.5	30211-FLEX	39211-FLEX	-
	100 m	15	30215-FLEX	39215-FLEX	-
	-	28	30228-FLEX	39228-FLEX	_
		40	30240-FLEX	39240-FLEX	-
Double PEEK Collared					
		6	30406	31406	32406
		10	30410	31410	32410
1.00	100	20	30420	31420	32420
Double Long-neck					
	HELE.	10	31710	32710	_
		20	31720	32720	_

Thermo Scientific Chromatography Columns and Consumables 2014-2015

PTFE One-Piece Column Connector

Excellent for high-throughput screening and quick connection

- Fingertight, leak-free connection of analytical and guard columns with 10-32 threads
- Minimizes dead volume
- Inert and biocompatible material

PEEK One-Piece Column Connector

Description	Cat. No.	Quantity
One Piece Coupler	60170-370	1 Each

Solvent Inlet Filters

Feature a large surface area for a long lifetime

- \bullet 10 μm inlet filters for longer lifetime
- No tools required for replacement

Solvent Inlet Filters for UltiMate 3000 Systems

Description	Model	Cat. No.	Quantity
Filter frit, porosity 10µm, V4A stainless steel	UltiMate 3000 pumps	6268.0110	10 Each
Filter frit, porosity 10µm, titanium	UltiMate 3000 pumps	6268.0111	10 Each
Filter holder	UltiMate 3000 pumps	6268.0115	6 Each
Solvent supply line, 1.5 x 3.0 x 1000mm	UltiMate 3000 pumps	6030.2548	1 Each

Bottom-of-the-Bottle solvent filters

- Efficient draw
- 100% PTFE polymer, including 2µm filters
- Built-in helium sparge port and frit

Solvent Filters for HPLC Systems

	Туре	For Use with	Cat. No.	Quantity
-	Stainless Steel	Fit 1/16in OD tube to 1/8in OD plastic tubing	A-302	1 Each
	Stainless Steel	Fit to 1/8in OD plastic tubing using 1/8in PP nut	A-302A	1 Each
(i)	Bottom-of-the-Bottle	3/16in OD plastic tubing	A-436	1 Each
	Bottom-of-the-Bottle	1/8in OD tubing	A-437	1 Each

High Pressure Stainless Steel Nuts and Ferrules

Accommodate a wide range of configurations

- Designed for 10-32 port configurations
- Burr and contaminant free

Thermo Scientific High Pressure Stainless Steel Nuts and Ferrules

Туре	Cat. No.	Quantity
10-32 thread nut with ferrule	F-190	1 Each
Replacement PEEK Ferrules	F-192x	10 Pack
Male hex nut	U-400x	10 Pack
Universal ferrules, 0.625in	U-401x	10 Pack
Valco male hex nut, 10-32 thread	U-320x	10 Pack
Valco ferrules, 0.625in	U-321x	10 Pack
Male hex nut, Waters compatible	U-410x	10 Pack

Reducing Union for Preparative Columns

Connects 30 to 50mm ID preparative columns to 1/16in tubing

- Stainless steel construction
- 1.0mm bore
- Without frit

Reducing Union for Preparative Column

Description	Cat. No.	Quantity
1/8in to 1/16in Reducing Union for Preparative Column	60182-357	1 Each

PEEK Fingertight Fittings

Machined for reliability and ease of use

- Resist cracking, breaking, thread stripping and leaking in both low and high pressure applications
- Biocompatible for a broad range of applications

PEEK Fingertight Fittings

	Туре	Cat. No.	Quantity
	One-piece Fingertight Fitting, 1/16in, 0.37in head	F-120x	10 Pack
	One-Piece Long Fingertight Fitting, 1/16in, 0.37in head	F-130x	10 Pack
	One-Piece PEEK Fingertight Fitting, 1/32in, 0.25in head	M-645x	10 Pack
è 🖕	Two-Piece Fingertight Wing Nut with Ferrule, 1/16in	F-300x	10 Pack
	Replacement PEEK Ferrules	F-142x	10 Pack
	Column End Plugs, 1/16in, 10-32 coned, Delrin, Black	U-467BLKx	10 Pack
	Column End Plugs, 1/16in, 10-32 coned, Delrin, Red	U-467Rx	10 Pack

Viper Unions

Suitable only for direct connection of two Viper capillaries

Description	Cat. No.	Quantity
Viper union, stainless steel	6040.2304	1 Each

Stainless Steel Unions, Tees and Crosses

Well-suited to high pressure applications

- Absolute zero or low dead volume formats
- Includes two stainless steel nuts and ferrules

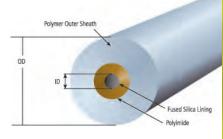
Stainless Steel Unions, Tees and Crosses

	Description	Through Hole (in)	Swept Volume (µL)	Cat. No.	Quantity
	Union, stainless steel, Upchurch Scientific/Parker fittings compatible, includes 2 stainless steel nuts and ferrules	0.010	0.025	U-435	1 Each
AL AL	Union, stainless steel, Upchurch Scientific/Parker fittings compatible, includes 2 stainless steel nuts and ferrules	0.020	0.134	U-402	1 Each
	Union, stainless steel, Upchurch Scientific/Parker fittings compatible, includes 2 stainless steel nuts and ferrules	0.050	0.836	U-437	1 Each
	Union, stainless steel, Upchurch Scientific/Parker fittings compatible, includes 2 stainless steel nuts and ferrules	0.062	~0.0	U-438	1 Each
and the second s	Union, stainless steel, Waters fittings compatible, includes 2 stainless steel nuts and ferrules	0.020	0.129	U-412	1 Each
J.	Union, stainless steel, Valco fittings compatible, includes 2 stainless steel nuts and ferrules	0.020	0.103	U-322	1 Each
Can and	Tee, stainless steel, 10-32 fittings for use with 1/16in OD tubing	0.020	0.57	U-428	1 Each
	Cross, stainless steel, 10-32 fittings for use with 1/16in OD tubing	0.020	0.72	U-430	1 Each

PEEK Unions, Tees and Crosses

Well-suited to high pressure applications

- Absolute zero or low dead volume formats
- Biocompatible


PEEK and PEEK Lined Unions, Tees and Crosses

	Description	Through Hole (in)	Swept Volume (µL)	Cat. No.	Quantity
4	Union, PEEK polymer, includes two PEEK 2-piece fittings	0.010	0.070	P-742	1 Each
	Union, PEEK polymer, includes two PEEK 2-piece fittings	0.020	0.28	P-704	1 Each
	Tee, PEEK, 10-32 fittings for use with 1/16in OD tubing, includes three 10-32 PEEK double-winged nuts	0.020	0.57	P-727	1 Each
	PEEK, 10-32 fittings for use with 1/16in OD tubing, includes four 10-32 PEEK double-winged nuts	0.020	0.72	P-729	1 Each

PEEKsil Capillary Tubing

Excellent chemical compatibility and very low carryover

- Precision-bore fused silica tubing coated with 1/16in OD PEEK covering
- Usable in most standard chromatography systems
- Withstands high pressures
- Smooth internal surface for excellent flow characteristics
- Tubing is stiff: not recommended for uses requiring tubing bends
- Precut lengths only: cutting in the lab may damage tubing

PEEKsil Capillary Tubing

inal francis			
Length (cm)	Cat. No.	Quantity	
10	60182-500	5 Pack	
20	60182-501	5 Pack	•
50	60182-502	2 Pack	•
10	60182-503	5 Pack	
20	60182-504	5 Pack	
50	60182-505	2 Pack	
10	60182-506	5 Pack	
20	60182-507	5 Pack	
50	60182-508	2 Pack	••••••
	Length (cm) 10 20 50 10 20 50 10 20 50 10 20 50 10 20 	Length (cm) Cat. No. 10 60182-500 20 60182-501 50 60182-502 10 60182-503 20 60182-503 20 60182-503 20 60182-504 50 60182-505 10 60182-506 20 60182-506 20 60182-507	10 60182-500 5 Pack 20 60182-501 5 Pack 50 60182-502 2 Pack 10 60182-503 5 Pack 20 60182-503 5 Pack 20 60182-504 5 Pack 50 60182-505 2 Pack 10 60182-505 2 Pack 10 60182-505 2 Pack 10 60182-506 5 Pack 20 60182-507 5 Pack

Applications:

• HPLC

• LC-MS

PEEK Sleeves for Fused Silica Capillary Tubing

Withstands high pressures

1/16in OD PEEK Sleeves for Fused Silica Capillary Tubing

ID (in)	Color	Cat. No.	Quantity
0.008	Yellow	F-227	1 Each
0.010	Blue	F-228	1 Each
0.012	Natural	F-229	1 Each
0.015	Orange	F-230	1 Each
0.021	Natural	F-231	1 Each
0.030	Natural	F-232	1 Each

316 Stainless Steel Capillary Tubing

Cleaned, polished, passivated and ready-to-use

- Suitable for ultra high pressure applications
- Wide chemical compatibility
- Prefinished, square, burr-free ends and interiors to minimize dead volume connections
- Not recommended for biological samples
- Rough internal surface may lead to sample carryover

316 Stainless Steel Capillary Tubing

ID (in)	Length (cm)	Color	Cat. No.	Quantity
1/16in OD Pr	ecut Tubing			
0.005	5	Red	U-152	1 Each
	10	Red	U-153	1 Each
	20	Red	U-154	1 Each
	30	Red	U-155	1 Each
	50	Red	U-156	1 Each
	100	Red	U-157	1 Each
0.007	5	Black	U-126	1 Each
	10	Black	U-127	1 Each
	20	Black	U-128	1 Each
	30	Black	U-129	1 Each
	50	Black	U-130	1 Each
	100	Black	U-131	1 Each
0.010	5	Blue	U-111	1 Each
	10	Blue	U-112	1 Each
	20	Blue	U-113	1 Each
	30	Blue	U-114	1 Each
	50	Blue	U-132	1 Each
	100	Blue	U-133	1 Each
1/32in OD Pi	recut Tubing with 1/16	in Sleeves		
0.005	10.5	Red	30011-FLEX	1 Each
	15	Red	30015-FLEX	1 Each
	28	Red	30028-FLEX	1 Each
	40	Red	30040-FLEX	1 Each
0.007	10.5	Yellow	39011-FLEX	1 Each
	15	Yellow	39015-FLEX	1 Each
	28	Yellow	39028-FLEX	1 Each
	40	Yellow	39040-FLEX	1 Each

1/16in 316 Stainless Steel Tubing, 5-Foot Coil

ID (in)	Cat. No.	Quantity
0.005	U-158	1 Each
0.007	U-108	1 Each
0.010	U-106	1 Each
0.020	U-105	1 Each
0.030	U-107	1 Each
0.040	U-144	1 Each
0.046	U-151	1 Each

PEEK Capillary Tubing

Pre-cut and color-coded for easy identification and use

- Broad chemical compatibility
- Biocompatible
- Easily cut to desired length
- Appropriate for many HPLC applications
- Resistant to most organic solvents, but nitric acid, sulfuric acid, dichloromethane, THF and DMSO are not recommended

1/16in OD Precut PEEK Tubing

ID (in)	Length (cm)	Color	Cat. No.	Quantity
0.003	5	Natural	37003-5	1 Each
	10	Natural	37003-10	1 Each
	20	Natural	37003-20	1 Each
	30	Natural	37003-30	1 Each
	50	Natural	37003-50	1 Each
	100	Natural	37003-100	1 Each
0.005	5	Red	37005-5	1 Each
	10	Red	37005-10	1 Each
	20	Red	37005-20	1 Each
	30	Red	37005-30	1 Each
	50	Red	37005-50	1 Each
	100	Red	37005-100	1 Each
0.007	5	Yellow	37007-5	1 Each
	10	Yellow	37007-10	1 Each
	20	Yellow	37007-20	1 Each
	30	Yellow	37007-30	1 Each
	50	Yellow	37007-50	1 Each
	100	Yellow	37007-100	1 Each
0.010	5	Blue	37010-5	1 Each
	10	Blue	37010-10	1 Each
	20	Blue	37010-20	1 Each
	30	Blue	37010-30	1 Each
	50	Blue	37010-50	1 Each
	100	Blue	37010-100	1 Each
0.020	5	Orange	37020-5	1 Each
	10	Orange	37020-10	1 Each
	20	Orange	37020-20	1 Each
	30	Orange	37020-30	1 Each
	50	Orange	37020-50	1 Each
	100	Orange	37020-100	1 Each

1/16in OD PEEK Tubing, 5-Foot Coil

ID (in)	Cat. No.	Quantity
0.003	37003	1 Each
0.005	37005	1 Each
0.007	37007	1 Each
0.010	37010	1 Each
0.020	37020	1 Each
0.030	37030	1 Each
0.040	37040	1 Each

Polymer Tubing Cutter

Produces a flat, 90°, burr-free end

- Compatible with rigid polymeric tubing
- Guide holes for 1/16in and 1/8in tubing

Polymer Tubing Cutter

Description	Cat. No.	Quantity
Polymeric Tubing Cutter	A-327	1 Each
Replacement blades	A-328	5 Pack

Terry Tool Tubing Cutters

Produce clean, 90° cuts of stainless steel tubing

Terry Tool Tubing Cutters

Description	Cat. No.	Quantity
1/16in stainless steel tubing	60182-509	1 Each
1/8in stainless steel tubing	60182-510	1 Each

Fused Silica Cutter

Fused Silica Cutter

Description	Cat. No.	Quantity
Cutter for fused silica capillaries	6720.0016	1 Each

Rheodyne 7725 and 7725i Sample Injectors

Allow continuous flow between the load and inject positions to protect against pressure shock

- Stainless steel construction
- Make-Before-Break (MBB) design
- Can use partial filling for zero sample waste or complete filling for better reproducibility
- Inject 1µL to 5mL with high accuracy and precision
- 7725i features a position sensing switch for a reproducible start signal

Rheodyne 7725 and 7725i Sample Injectors

Model	Mode	Features	Cat. No.	Quantity
7725	Dual	Continuous flow	7725	1 Each
7725i	Dual	Continuous flow, position sensing switch	7725i	1 Each

Rheodyne 9725 and 9725i Sample Injectors

Allow continuous flow between the load and inject positions to protect against pressure shock

- Biocompatible PEEK construction
- Make-Before-Break (MBB) design
- Can use partial filling for zero sample waste or complete filling for better reproducibility
- Inject 1µL to 5mL with high accuracy and precision
- 9725i features a position sensing switch for a reproducible start signal

Rheodyne 9725 and 9725i Sample Injectors

Model	Mode	Features	Cat. No.	Quantity
9725	Dual	Continuous flow	9725	1 Each
9725i	Dual	Continuous flow, position sensing switch	9725i	1 Each

Rheodyne 8125 Low-dispersion Microscale Injector

Designed for use with 1 and 2mm ID HPLC columns

- Can use partial filling for zero sample waste or complete filling for better reproducibility
- · Position sensing switch provides reproducible start signal
- Suitable for use with 5 to 50µL sample loops

Rheodyne 8125 Low-dispersion Microscale Injector

Model	Mode	Features	Cat. No.	Quantity
8125	Dual	Continuous flow	8125	1 Each

Rheodyne 7010 Sample Injector

Single-mode sample injector designed for the complete filling method

Rheodyne 7010 Sample Injector

Model	Mode	Features	Cat. No.	Quantity
7010	Single	Complete filling method	7010	1 Each

Compatible with: sample loop sizes 5µL to 20mL

Rheodyne 9010 Sample Injector

Single-mode sample injector designed for the complete filling method

- Compatible with sample loop sizes 5µL to 10mL
- PEEK stator
- Position sensing switch provides a reproducible start signal

Rheodyne 9010 Sample Injector

Model	Mode	Features	Cat. No.	Quantity
9010	Single	Continuous flow, position sensing switch	9010	1 Each

Rheodyne Ports for Injectors

Suitable for popular Rheodyne injector models

Rheodyne Ports for Rheodyne Injectors Models 7010 and 9010

For Use with Rheodyne Model	Cat. No.	Quantity
7010 Filler Port, Stainless Steel	7012	1 Each
9010 Filler Port, PEEK	9012	1 Each
9010 Needle Port, PEEK	9013	1 Each

Rheodyne Sample Loops

For Rheodyne sample injectors in stainless steel or biocompatible PEEK

PEEK and Stainless Steel Sample Loops

Description	Volume	ID (mm / in)	Cat. No.	Quantity
Sample loops for	5µL	0.18 / 0.007	7020	1 Each
7010 and 7125	10µL	0.30 / 0.012	7021	1 Each
injectors, Stainless Steel	20µL	0.30 / 0.012	7022	1 Each
	50µL	0.51 / 0.020	7023	1 Each
	100µL	0.51 / 0.020	7024	1 Each
	200µL	0.76 / 0.030	7025	1 Each
	500µL	0.76 / 0.030	7026	1 Each
	1mL	0.76 / 0.030	7027	1 Each
	5mL	1.0 / 0.040	7029	1 Each
Sample loops for	5µL	0.18 / 0.007	7755-020	1 Each
7725 and 7725i	10µL	0.30 / 0.012	7755-021	1 Each
injectors Stainless Steel	20µL	0.30 / 0.012	7755-022	1 Each
01001	50µL	0.51 / 0.020	7755-023	1 Each
Sample loops for	5µL	0.20 / 0.008	8020	1 Each
8125 injectors, Stainless Steel	10µL	0.20 / 0.008	8021	1 Each
Stanness Steel	20µL	0.25 / 0.010	8022	1 Each
	50µL	0.30 / 0.012	8023	1 Each
Sample loops for	2µL	Internal	7755-015	1 Each
9010 and 9725	5µL	0.18 / 0.007	9055-020	1 Each
injectors, PEEK	10µL	0.25 / 0.010	9055-021	1 Each
	20µL	0.25 / 0.010	9055-022	1 Each
	50µL	0.51 / 0.020	9055-023	1 Each
	100µL	0.51 / 0.020	9055-024	1 Each
	200µL	0.51 / 0.020	9055-025	1 Each
	500µL	0.76 / 0.030	9055-026	1 Each
	1mL	0.76 / 0.030	9055-027	1 Each
	5mL	0.76 / 0.030	9055-029	1 Each
Sample loops for	5µL	0.18 / 0.007	9055-020	1 Each
9725 and 9725i	10µL	0.25 / 0.010	9055-021	1 Each
injectors, PEEK	20µL	0.25 / 0.010	9055-022	1 Each
	50µL	0.51 / 0.020	9055-023	1 Each

RheBuild Kits

Maintain Rheodyne valves and injectors

RheBuild Kits

For Use with Rheodyne Models	Cat. No.	Quantity
3725/3725i/3725-038/3725i-038	3725-999	1 Each
7010/7000	7010-999	1 Each
7125/7126	7125-999	1 Each
7410	7410-999	1 Each
7520/7526	7520-999	1 Each
7725/7725i/7726	7725-999	1 Each
8125/8126	8125-999	1 Each
9125/9126	9125-999	1 Each

Rheodyne Suction Needle Adapter

For use with Rheodyne sample injectors

Rheodyne Suction Needle Adapter

For Use with	Cat. No.	Quantity
Rheodyne Injector Models 9725 and 9725i	9125-076	1 Each

Rheodyne Replacement Rotor Seals for Injectors

Suitable for popular Rheodyne injector models

Rheodyne Replacement Rotor Seals for Injectors

For Use with Rheodyne Models	Cat. No.	Quantity
Vespel Seals		
7000/7010/7040/7067	7010-039	1 Each
7030	7030-003	1 Each
7060/7066	7060-070	1 Each
7125/7126	7125-047	1 Each
7410	7410-038	1 Each
7413	7413-013	1 Each
8125/8126	8125-038	1 Each
Tefzel Seals		
7000/7010/7040	7010-071	1 Each
7030	7030-015	1 Each
7060/7066/9060	7060-074	1 Each
7410	7410-075	1 Each
7125/7126	7125-079	1 Each
8125	8125-097	1 Each
9010	9010-051	1 Each
9125	9125-082	1 Each
PEEK Seals		
3725/3725i/3725-038/3725i-038	3725-018	1 Each

Rheodyne Stators

Suitable for popular Rheodyne injector models

Rheodyne Stators

For Use with Rheodyne Models	Cat. No.	Quantity
7000/7010/7030/7040/7125	7010-040	1 Each
7010-087/7125-081	7010-066	1 Each
7060/7066	7060-039	1 Each
7410/7413	7410-041	1 Each
9010/9030/9125	9125-043	1 Each
9060	9060-016	1 Each
7725	7725-010	1 Each
8125/8126	8125-098	1 Each

Rheodyne Stator Face Assemblies

For Use with Rheodyne Models	Cat. No.	Quantity
3725/3725i/3725-038/3725i-038	3725-039	1 Each
7125	7125-067	1 Each
8125	8125-074	1 Each
9125/9010/9030	8125-094	1 Each
9060	9060-015	1 Each
9725	7725-026	1 Each

Rheodyne Injection Port Needle Cleaner

For use with Rheodyne sample injectors

Rheodyne Injection Port Needle Cleaner

For Use with	Cat. No.	Quantity
Rheodyne injectors	7125-054	1 Each

Rheodyne Valve Mounting Brackets

For use with Rheodyne sample injectors

Rheodyne Injection Port Needle Cleaner

For Use with	Cat. No.	Quantity
Angle bracket	7160-010	1 Each
Mouting panel	7160	1 Each

RheFlex High Pressure Fittings

Precision machined from 316 stainless steel

RheFlex High Pressure Fittings

	Туре	Cat. No.	Quantity
	Short Fittings Set	6000-109	5 Pack
	Short Fittings Set	6000-209	10 Pack
	Long Fittings Set	6000-111	5 Pack
	Long Fittings Set	6000-211	10 Pack
	Extra Long Fittings Set	6000-162	5 Pack
	Extra Long Fittings Set	6000-262	10 Pack
	1/16in Ferrule	6000-110	5 Pack
the state of the s	1/16in Ferrule	6000-210	10 Pack
-	0.5mm Ferrule for Model 8125	8125-084	1 Each

RheFlex Two-Piece PEEK Fittings

Provide inert, metal-free connections

- Slotted back-side of the ferrule is squeezed down onto the tube by the mating conical surface of the nut
- May be used on 1/16in metal or plastic tubing reliably up to 5000 psi
- Reusable ferrule and nut

RheFlex Two-Piece PEEK Fittings

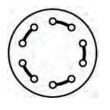
Туре	Cat. No.	Quantity
Fitting set, standard length	6000-054	5 Pack
Fitting set, short	6000-055	5 Pack
Fitting set, X-long	6000-066	1 Each
Replacement ferrules	6000-051	5 Pack

Cheminert Model C2 Microbore Injector

Can be used as an injector or switching valve

- 1/16in fittings
- 0.010in ports
- Available in 6-port or 10-port configurations
- Available with manual or microelectric actuator

Cheminert Model C2 Microbore Injector


Description	Sample Volume	Cat. No.	Quantity
Model C2 injector, N60 stainless stator, 5µLloop, manual	6 ports	C2-1006	1 Each
	10 ports	C2-1000	1 Each
Model C2 injector, N60 stainless stator, 5µL loop,	6 ports	C2-1006EH	1 Each
microelectric actuator	10 ports	C2-1000EP	1 Each
Sample injector loops, stainless steel	2µL	CSL2	1 Each
	5µL	CSL5	1 Each
	10µL	CSL10	1 Each
	20µL	CSL20	1 Each
	50µL	CSL50	1 Each
	100µL	CSL100	1 Each
Model C4 injector, PAEK stator, 5µL loop,	6 ports	C2-1346EH	1 Each
microelectric actuator	10 ports	C2-1340EP	1 Each
Sample injector loops, PAEK	5µL	CZSL5PK	1 Each
	10µL	CZSL10PK	1 Each
	50µL	CZSL50PK	1 Each
	100µL	CZSL100PK	1 Each

Valco Injector Model C6W

Description	Volume	Cat. No.	Quantity
Model C6W injector, six 0.016in ports, manual	20µL loop	C6W	1 Each
Model EPC6W injector, six 0.016in ports, microelectric actuator	20µL loop	EPC6W	1 Each
Replacement rotor	-	SSAC6W	1 Each
Sample injector loop, stainless steel	2µL	SL2CW	1 Each
Sample injector loop, stainless steel	5µL	SL5CW	1 Each
Sample injector loop, stainless steel	10µL	SL10CW	1 Each
Sample injector loop, stainless steel	20µL	SL20CW	1 Each
Sample injector loop, stainless steel	50µL	SL50CW	1 Each
Sample injector loop, stainless steel	100µL	SL100CW	1 Each

Valco Accessories

Description	Volume	Cat. No.	Quantity
Valco syringe ports	22 ga. needles; 1/16in fittings	VISF-1	1 Each
Valco syringe ports	22 ga. 2in needles	VISF-2	1 Each
Valco Nuts and Ferrules	1/16in standard nut	ZN1-10	10 Pack
Valco Nuts and Ferrules	1/16in long nut	LZN1-10	10 Pack
Valco Nuts and Ferrules	1/16in SS ferrule	ZF1-10	10 Pack

HPLC Syringes

Syringes and needles for Thermo Scientific LC instruments

Syringes for UltiMate 3000 Instruments

Volume (µL)	Instrument	Cat. No.	Quantity
25	All WPS-3000 variants	6822.0001	1 Each
100	All WPS-3000 variants	6822.0002	1 Each
250	All WPS-3000 and ACC-3000 variants, except the WPS-3000TXRS	6822.0003	1 Each
500	All WPS-3000 variants, except the WPS-3000TXRS	6822.0004	1 Each
1000	All WPS-3000 and ACC-3000 variants, except the WPS-3000TXRS	6822.0005	1 Each

Syringes for Thermo Scientific Instruments

Volume (µL)	Needle Type	Length (mm)	Gauge	Instrument	Cat. No.	Quantity
250	Removable	50	22	LCQ	365ILT21	1 Each
500	Removable	50	22	LCQ	365JLT41	1 Each
250	-	-	-	AS1000, AS3000	365ILT91	1 Each
500	-	_	_	AS1000, AS3000	365JLT61	1 Each
2500	-	-	-	AS3000, AS3500	365LLT81	1 Each

Mass Spectrometry Replacement ESI Probe Needles

Instrument	Cat. No.	Quantity
LCQ, XP, DECA, Advantage	365RNLT1	1 Each
LCQ MS	365RNLT2	1 Each
LCO XSO	365RNLT3	1 Each

Thermo Scientific Chromatography Columns and Consumables 2014-2015

LC Syringes for Manual Injection valves

Easy, accurate and reproducible manual injection

- Square tip to prevent damage to the injector
- Wide range of volumes
- Precision made from borosilicate glass and stainless steel
- Robust design and easy-to-read markings

Gas Tight Syringes for Rheodyne / Valco Injectors

Volume (µL)	Needle Type	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
10	Removable	50	22	90° Blunt End	365DLG21	1 Each
25	Removable	50	22	90° Blunt End	365FLG31	1 Each
50	Removable	50	22	90° Blunt End	365GLG41	1 Each
100	Removable	50	22	90° Blunt End	365HLG51	1 Each
250	Removable	50	22	90° Blunt End	365ILG61	1 Each
500	Removable	50	22	90° Blunt End	365JLG71	1 Each

Replacement Needles

Replacement Needle for Syringe	Cat. No.	Quantity
365DLG21	365RNL15	5 Pack
365FLG31	365RNL25	5 Pack
365GLG41	365RNL25	5 Pack
365HLG51	365RNL25	5 Pack
365ILG61	365RNL25	5 Pack
365JLG71	365RNL25	5 Pack

Gas Tight Syringes for Rheodyne / Valco Injectors

Volume (µL)	Needle Type	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
10	Fixed	50	22	90° Blunt End	365DL263	1 Each
25	Fixed	50	22	90° Blunt End	365F6315	1 Each
50	Fixed	50	22	90° Blunt End	365G6316	1 Each
100	Fixed	50	22	90° Blunt End	365H6317	1 Each
250	Fixed	50	22	90° Blunt End	365ILG61	1 Each
500	Fixed	50	22	90° Blunt End	365J6319	1 Each

Syringes for Rheodyne / Valco Injectors

Volume (µL)	Needle Type	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
5	Fixed	50	22	90° Blunt End	365CL221	1 Each
10	Fixed	50	22	90° Blunt End	365DL231	1 Each
25	Fixed	50	22	90° Blunt End	365FL241	1 Each
50	Fixed	50	22	90° Blunt End	365GL251	1 Each
100	Fixed	50	22	90° Blunt End	365HL261	1 Each
250	Fixed	50	22	90° Blunt End	365IL271	1 Each
500	Fixed	50	22	90° Blunt End	365JL281	1 Each

Other LC Syringes

- Instrument specific syringes
- Luer-Lok syringes ideal for priming
- Macro volume sampling syringes suitable for liquid or gas samples

Syringes for CTC Instruments

Volume (µL)	Needle Type	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
10	Fixed	50	22	-	365DL991	1 Each
25	Fixed	50	22	-	365FL715	1 Each
50	Fixed	50	22	-	365GL810	1 Each
100	Fixed	50	22	-	365HL331	1 Each

Replacement Plungers

Replacement Plunger for Syringe	Cat. No.	Quantity
365DL991	365RP532	1 Each
365FL715	365RP922	1 Each

Syringes for Waters Instruments

Volume (µL)	Needle Type	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
1	Fixed	70	26s	Bevel	365BL443	1 Each
1	Fixed	70	26s	90° Blunt End	365BL447	1 Each

PTFE Luer-Lok Syringes

Volume (mL)	Needle Type	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
1	_	_	-	-	365KL531	1 Each
2.5	-	-	-	-	365LL541	1 Each
5	-	-	-	-	365ML551	1 Each
10	-	-	-	-	365NL561	1 Each
25	-	-	-	-	365PL571	1 Each

Needles for Luer-Lok Priming Syringes

Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
50	22	90° Blunt End	365RNL22	2 Pack

Syringes for Macro Volume Sampling

Volume (mL)	Needle Type	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
1	Fxed	50	22s	Bevel	365K3051	1 Each
2.5	Fxed	50	22s	Bevel	365LL375	1 Each
5	Fxed	50	22s	Bevel	365M5212	1 Each
10	Fxed	50	22s	Bevel	365N5214	1 Each

-

Detector Lamps

Detector Lamps for UltiMate 3000 Instruments

Description	Model	Cat. No.	Quantity
Deuterium Lamp	MWD-3000(RS), DAD-3000(RS), VWD-3100 and VWD-3400RS	6074.1110	1 Each
Tungsten Lamp	MWD-3000(RS), DAD-3000(RS), VWD-3100 and VWD-3400RS	6074.2000	1 Each

Detector Lamps for Thermo Scientific Instruments

Description	Model	Cat. No.	Quantity
Deuterium Lamp	SP8400/SP8430/SP8440/SP8450/SP8480/SP8490	DSP-901	1 Each
	SP8480XR/SP8773XR	DSP-907	1 Each
	Linear UV100/UV200/UV1000/UV2000/UV3000/ Focus/Spectrochrom	DSP-908	1 Each

Detector Lamps for Agilent Instruments

Description	Model	Cat. No.	Quantity
Deuterium Lamp	Agilent HP1040/HP1050 (G1306A) DAD/HP 1050 DA (1050 MWD)/ HP MW (79854A) / HP 1090 (75880A) DAD	DHP-901	1 Each
	HP 1080/HP 1081/HP1081B/HP1082B/HP1084/HP1084B	DHP-902	1 Each
	HP 1050 VW (79853C)	DHP-903	1 Each
	HP 8450/8450A	DHP-909	1 Each
	HP 1100 (G1314) VW	DHP-910	1 Each
	HP 1100 (G1315A) DAD	DHP-911	1 Each
	HP 8453	DHP-912	1 Each
	HP 8452 A DAD/HP 8452A Opt 002	DHP-913	1 Each
Xenon Lamp	HP 1046/HP1046A	DHP-906	1 Each
LL Deuterium	Agilent 1100 VWD long life	DHP-910LL	1 Each
Lamp	Agilent 1100 DAD long life	DHP-911LL	1 Each

Detector Lamps for Merck-Hitachi Instruments

Description	Model	Cat. No.	Quantity
Deuterium Lamp	101/102/111	DHI-901	1 Each
	100-10/100-40/100-50/100-60	DHI-902	1 Each
	150-20/200/220/300/330/340/2000/3000/4000/ L2500/L3000/L4000/L-4500	DHI-903	1 Each
	L4200/L4250/L4500	DHI-908	1 Each
	LaChrom L4720/L4520/L7400/L450	DHI-910	1 Each
Xenon Lamp	Hitachi fluorescence detectors F1000/2000/4000 Series	DHI-911	1 Each

Our applications team is regularly presenting at key events, download one of our recent posters. www.thermoscientific.com/chromatography

Description	Model	Cat. No.	Quantity
Deuterium Lamp	Lambda 3/7/9	DPE-903	1 Each
	360/460/560	DPE-906	1 Each
	Integral 2000/Integral 4000/LC55/LC65/LC85/LC95	DPE-911	1 Each
	LC-90/LC-290	DPE-913	1 Each
	Lambda 2/2S/10/11 and others	DPE-914	1 Each
	Series 200 DAD	DPE-915	1 Each
Tungsten Lamp	Lambda 2/2S/10/11 and others	DPE-908	1 Each

Detector Lamps for Shimadzu Instruments

Description	Model	Cat. No.	Quantity
Deuterium Lamp	UV120/UV160/UV160A/UV240/UV260/UV265	DSH-901	1 Each
	SPD-2A/SPD-3/SPD-4	DSH-902	1 Each
	D300L/UV200S	DSH-903	1 Each
	SPD 6A/SPD-6AV	DSH-916	1 Each
	SPD 10A/SPD 10AS/SPD-10AV/SPD-10AVP	DSH-917	1 Each
	SPD-M10AVP PDA	DSH-918	1 Each
Xenon Lamp	Shimadzu RF530/RF510	DSH-912	1 Each
	Shimadzu RF540/RF535/RF551/RF500	DSH-913	1 Each
	Shimadzu RF1501.5301/5000	DSH-914	1 Each
	RF10A RF10AX	DSH-915	1 Each
LL Deuterium Lamp	Shimadzu SPD-10 Series long life	DSH-918LL	1 Each

Detector Lamps for Varian Instruments

Description	Model	Cat. No.	Quantity
Deuterium Lamp	UV 2050	DVA-901	1 Each
-	UV 50/Varichrom	DVA-903	1 Each
	UV100/UV200	DVA-904	1 Each
	UV5/2550	DVA-905	1 Each
	LC5000/LC5500	DVA-906	1 Each
	Star 9050	DVA-907	1 Each
	ProStar 340/345 UV/Vis	DVA-909	1 Each

Detector Lamps for Waters Instruments

Description	Model	Cat. No.	Quantity
			,
Mercury Lamp	440/441/490	DWA-901	1 Each
Deuterium Lamp	480/481/480LC/481LC/Lambda Max/LC1	DWA-910	1 Each
	484	DWA-915	1 Each
	486	DWA-918	1 Each
	2486	DWA-918LC	1 Each
	996 PDA/2996	DWA-921	1 Each
	990/991/994 PDA	DWA-926	1 Each
	2487 Dual Wavelength/2488	DWA-930	1 Each
Tungsten Lamp	RI/R401/R403/R404	DWA-911	1 Each
Cadmium Lamp	440/441/490	DWA-912	1 Each
Zinc Lamp	440/441/490	DWA-913	1 Each
Xenon Lamp	470/475/2475 Lamp only	DWA-923	1 Each
	474	DWA-929	1 Each
LL Deuterium	Waters 996	DWA-921LL	1 Each
Lamp	Waters Alliance 2487/2488	DWA-930LL	1 Each

LC Columns and Accessories >> LC Accessories

Pump Spares

Pump Spares for UltiMate 3000 Instruments

Description	Model	Cat. No.	Quantity
Maintenance Kits			
Maintenance Kit for ISO-3100SD	ISO-3100SD	6040.1950	1 Each
Maintenance Kit for LPG-3400SD	LPG-3400SD	6040.1951	1 Each
Maintenance Kit for DGP-3600SD	DGP-3600SD	6040.1952	1 Each
Maintenance Kit for HPG-3x00SD	HPG-3x00SD	6040.1953	1 Each
Maintenance Kit for LPG-3400RS	LPG-3400RS	6040.1954A	1 Each
Maintenance Kit for DGP-3600RS	DGP-3600RS	6040.1955A	1 Each
Maintenance Kit for HPG-3x00RS	HPG-3x00RS	6040.1956A	1 Each
Maintenance Kit for LPG-3400XRS	LPG-3400XRS	6043.1954	1 Each
Pistons			
Pistons, sapphire	SD, RS, BM pumps	6040.0042	2 Each
Pistons, sapphire	LPG-3400XRS pump	6043.0169	1 Each
Piston Seals			
Piston Seals, RP	SD, RS pumps	6040.0304	2 Each
Piston Seals, NP	SD, RS pumps	6040.0306	2 Each
Piston Seal	LPG-3400XRS pump	6043.0295	1 Each
Check Valves			
Check valve, sapphire, cardridge type	SD, RS, BX, BM pumps	6041.2300	1 Each
Check valve, ZrO ceramics, cardridge type	SD, RS, BX, BM pumps	6041.2301	1 Each
Check valve, sapphire, cardridge type	LPG-3400XRS pump	6043.0145	1 Each

Pump Spares for Thermo Scientific Instruments

Description	Model	Cat. No.	Quantity
Pistons			
Piston	Accela pump	00201-11328	2 Each
Piston, sapphire	Accela pump	00950-01-00126	2 Each
Piston Seals			
Secondary piston seal (wash seal)	Accela pump	00950-01-00128	2 Each
Piston Seal Black	Surveyor LC	SFS-220	1 Each
Piston Seal Yellow	Surveyor LC	SFS-220G	1 Each
Wash Seal White	Surveyor LC	SFS-230	1 Each
Piston Seal Black	Surveyor MS	SFS-320	1 Each
Piston Seal Clear	Surveyor MS	SFS-320U	1 Each
Wash Seal clear	Surveyor MS	SFS-330	1 Each
Check Valves			
Outlet Check Valve	Accela pump	00950-01-00131	1 Each
Inlet Check Valve	Accela pump	00950-01-00130	1 Each
Inlet Check Valve Assembly – Cartridge Type	Surveyor LC	SFS-3001	1 Each
Outlet Check Valve Assembly – Cartridge Type	Surveyor LC	SFS-3002	1 Each
Inlet/Outlet Check Valve Cartridge	Surveyor MS	SFS-6001C	1 Each

Pump Spares for Agilent Instruments

Description	Model	Cat. No.	Quantity
Pistons			
Piston Assembly Sapphire	1090	SHP-200	1 Each
Piston Assembly Sapphire	1050 and 1100	SHP-400	1 Each
Piston Seals			
Piston Seal Yellow	1050, 1090 and 1100	SHP-220G	1 Each
Piston Seal Black	1050 and 1100	SHP-420K	1 Each
Check Valves and Spares			
Replacement Inlet/Outlet Check Valve Cartridge	1090	SHP-5002	1 Each
Inlet/Outlet Check Valve Assembly	1090	SHP-5001	1 Each

Pump Spares for PerkinElmer Instruments

Description	Model	Cat. No.	Quantity
Pistons			
HP Piston Assembly Sapphire	Series 200, 400, 410, 620, Model 250, Integral 4000	SOT-PE600	1 Each
HP Piston Assembly Sapphire	Series 200, 400, 410, 620, Model 250, Integral 4000	SOT-PE500	1 Each
Piston Seals			
HP Piston Seal Grey	Series 200, 400, 410, 620, Model 250, Integral 4000	SOT-PE220	1 Each
HP Piston Seal Yellow	Series 200, 400, 410, 620, Model 250, Integral 4000	SOT-PE220G	1 Each
LP Piston Seal Black	Series 200, 400, 410, 620, Model 250, Integral 4000	SOT-PE320	1 Each
LP Piston Seal Yellow	Series 200, 400, 410, 620, Model 250, Integral 4000	SOT-PE320G	1 Each
Check Valves and Spares			
Inlet/Intermediate Check Valve Assembly	Series 200, 400, 410, 620, Model 250, Integral 4000	SOT-PE3001	1 Each
Outlet Check Valve Assembly	Series 200, 400, 410, 620, Model 250, Integral 4000	SOT-PE3002	1 Each

Pump Spares for Varian Instruments

Model	Cat. No.	Quantity
5000, 5500, 5600	SOT-VA200	1 Each
2010, 2210, 2510	SOT-VA400	1 Each
5000, 5500, 5600	SOT-VA220	1 Each
2010, 2210, 2510	SOT-VA320	1 Each
2010, 2210, 2510	SOT-VA320G	1 Each
2010, 2210, 2510	SVA-3001	1 Each
2010, 2210, 2510	SVA-3002	1 Each
	2010, 2210, 2510 5000, 5500, 5600 2010, 2210, 2510 2010, 2210, 2510 2010, 2210, 2510	2010, 2210, 2510 SOT-VA400 5000, 5500, 5600 SOT-VA220 2010, 2210, 2510 SOT-VA320 2010, 2210, 2510 SOT-VA320G 2010, 2210, 2510 SVA-3001

-

Pump Spares continued

Pump Spares for Shimadzu Instruments

Description	Model	Cat. No.	Quantity
Pistons			
Piston Assembly Sapphire	LC-10 AS, LC-6, LC-6A	SOT-SH200	1 Each
Piston Assembly Sapphire	LC-9, LC-10AD, LC-600	SOT-SH202	1 Each
Piston Seals			
Piston Seal Yellow	LC-10 AT	SOT-SH-100-01	1 Each
Wash Seal White	LC-10 AT	SOT-SH-100-02	1 Each
Piston Seal Grey	LC-3, LC-4, LC-5, LC-6, LC-6A, LC-10 AS	SOT-SH220	1 Each
Wash Seal White	LC-3, LC-4, LC-5, LC-6, LC-6A, LC-10 AS	SOT-SH220G	1 Each
Piston Seal Yellow	LC-3, LC-4, LC-5, LC-6, LC-6A, LC-10 AS	SOT-SH520G	1 Each
Piston Seal Grey	LC-9, LC-10AD, LC-600	SOT-SH420	1 Each
Piston Seal Black	LC-10 ATvp	SOT-SH520	1 Each
Check Valves and Spares			
Inlet Check Valve Assembly	LC-3, LC-4, LC-5, LC-6, LC-6A, LC-10 AS	SOT-SSH3001	1 Each
Outlet Check Valve Assembly	LC-3, LC-4, LC-5, LC-6, LC-6A, LC-10 AS	SOT-SSH3002	1 Each
Inlet Check Valve Assembly – Cartridge Type	LC-9, LC-10AD, LC-600	SSH-6001	1 Each
Outlet Check Valve Assembly – Cartridge Type	LC-9, LC-10AD, LC-600	SSH-6002	1 Each

Pump Spares for Waters Instruments

Description	Model	Cat. No.	Quantity
Pistons		outritor	Quantity
Piston Assembly Sapphire	M510, M590, M600, M610 M6000	SWA-WA200	1 Each
Piston Assembly Ruby	M510, M590, M600, M610 M6000	SWA-WA200R	1 Each
Piston Assembly Sapphire	M45, M501	SWA-WA205	1 Each
Piston Assembly Sapphire	M515	SWA-WA800	1 Each
Piston Assembly Sapphire	Alliance 2690	SWA-WA900	1 Each
Piston Seals			
Piston Seal Black	M45, M501, M510, M590, M600, M610 M6000	SWA-WA220	1 Each
Piston Seal Yellow	M45, M501, M510, M590, M600, M610 M6000	SWA-WA220G	1 Each
Piston Seal Grey	M510EF, M590EF, M600EF, M610EF, M6000EF	SWA-WA600S	1 Each
Piston Seal Black	M515	SWA-WA820	1 Each
Piston Seal Yellow	M515	SWA-WA820G	1 Each
Piston Seal Black	Alliance 2690	SWA-WA920	1 Each
Piston Seal Yellow	Alliance 2690	SWA-WA920G	1 Each
Check Valves and Spares			
Inlet Check Valve Assembly	M45, M501, M510, M590, M600, M610 M6000	SWA-3201	1 Each
Outlet Check Valve Assembly Actuator Type	M45, M501, M510, M590, M600, M610 M6000	SWA-3202	1 Each
Outlet Check Valve	M45, M501, M510, M590, M600, M610 M6000	SWA-3202B	1 Each
Inlet Check Valve Repair Kit	M510, M590, M600, M610 M6000	SWA-3212	1 Each
Outlet Check Valve Assembly Actuator Type	M45, M501, M510, M590, M600, M610 M6000	SWA-3402	1 Each
Outlet Check Valve Assembly Ball & Seat Type	M45, M501, M510, M590, M600, M610 M6000	SWA-3402B	1 Each
Inlet Check Valve Assembly	M510EF, M590EF, M600EF, M610EF, M6000EF	SWA-4107	1 Each
Inlet Check Valve Repair Kit	M510EF, M590EF, M600EF, M610EF, M6000EF	SWA-4123	1 Each
Inlet Check Valve Assembly	M515	SWA-8001	1 Each
Outlet Check Valve Assembly	M515	SWA-8002	1 Each
Check Valve Cartridge	Alliance 2690	SWA-9001	1 Each

Dionex ICS-900 Ion Chromatography Systems

Routinely Analyze Multiple Anions or Cations in 10-15 Minutes

- Sensitive, stable, heated conductivity detection for precise results
- Compatibility with a broad range of polymeric separation columns for unparalleled application flexibility and reliability
- Thermo Scientific[™] Dionex[™] Chromeleon[™] SE allows control of a single Thermo Scientific Dionex ICS-900 with an autosampler

The Dionex ICS-900 is an integrated, single-channel ion chromatography system designed to run specific isocratic anion and cation applications. The system uses Thermo Scientific[™] Dionex[™] MMS[™] 300 membrane suppression with Displacement Chemical Regeneration (DCR) technology for low noise and stable baselines. Each ICS-900 system has an all-polymeric flow path with a reliable dual piston pump, high-pressure pulse damper, electrically actuated PEEK[™] valve, and a temperature-controlled conductivity cell.

Dionex ICS-900 Key Features:

- Dionex MMS 300 membrane suppression with DCR technology for drift-free baseline and ease-of-use
- Wide pump flow rate range to support 2, 3, and 4mm isocratic anion and cation columns
- Dual-piston, serial-pumping system with PEEK[™] flow path for low maintenance costs and maximum up-time
- All-polymeric flow pathway to eliminate contamination and corrosion
- Chromeleon Chromatography Data System software for full control, quality integration, and versatile reports to exceed all your data processing needs
- USB connectivity for fast, trouble-free
 instrument connection and configuration

Dionex ICS-900 Physical Specifications

Dimensions (h \times w \times d): 33 \times 24 \times 40cm (13 \times 9.5 \times 15.75in)

Weight 10kg (22lbs)

Power Requirements: 100 - 240 VAC, 50–60Hz, autoranging **The AS-DV** autosampler is a low-cost, metalfree, rugged, automated sample loading device designed especially for ion chromatography applications. The random access and sample preparation capabilities provide easily automated sample introduction to the chromatograph. Its new software control provides high flexibility to select the optimum injection parameters for filling injection loops or loading concentrator columns.

AS-DV Key Features:

- Full loop and concentrator loading
- Optional 6-port or 10-port valve for automated sample preparation or sample injection
- Random access
- Chromeleon control provides high flexibility to select the optimum injection parameters
- 0.5mL and 5.0mL polymeric vials with optional filter caps
- Automatic switching power supply for universal input voltage
- Sample Overlap injections for increased productivity

AS-DV Autosampler Specifications

Dimensions (h \times w \times d): 23 \times 45 \times 56cm (9 \times 17.5 \times 22in)

Weight: 16 kg (35 lbs)

Power Requirements: 100 - 240 VAC, 50–60Hz, autoranging

LC Columns and Accessories >> LC Accessories

Dionex ICS-900 Ion Chromatography System Bundles

Description	Cat. No.
Dionex ICS-900 IC System for Anions with AS-DV Autosampler and Chromeleon Software	078028
Dionex ICS-900 IC System for Cations with AS-DV Autosampler and Chromeleon Software	078029

Contact Customer Service for details of replacement columns and reagents for the Dionex ICS-900

The Anion Bundle includes:

- Dionex ICS-900 Ion Chromatography System
- AS-DV Autosampler
- Chromeleon 7 SE Software
- AS22 4mm Consumables Bundle:
 - 1- Dionex IonPac AS22 4mm, 064141
 - 1- Dionex IonPac AG22 4mm, 064139
 - Thermo Scientific[™] Dionex[™] AMMS[™]
 300 Anion MicroMembrane[™]
 Suppressor 4mm, 064558
 - 1- Dionex AMMS III Regenerant Concentrate, 4 pack, 057555
 - 1- Dionex ICS-900 DCR Anion Regenerant 2L Bottle, 057712
 - 1- AS22 Eluent Concentrate, 0670

The Cation Bundle includes:

- Dionex ICS-900 Ion Chromatography System
- AS-DV Autosampler
- Chromeleon 7 SE Software
- CS12A 4mm Consumables Bundle:
 - 1- Dionex IonPac CS12A 4mm, 046073
 - 1- Dionex IonPac CG12A 4mm, 046074
 - Thermo Scientific[™] Dionex[™] CMMS[™]
 300 Cation MicroMembrane Suppressor
 4mm, 064560
 - 1- Dionex CMMS III Regenerant Concentrate, 4 pack, 057556
 - 1- Dionex ICS-900 DCR Cation Regenerant 2L Bottle, 057713
 - 1- CS12A Eluent Concentrate, 057562

HOT POCKET and COOL POCKET Column Temperature Controllers

Wrap-around column temperature control systems

- Easy to install and use with a variety of column lengths
- Dual display of both actual and set point temperature
- HOT POCKET range from just above ambient to 85°C
- COOL POCKET range from 5°C to 55°C
- Explore sample selectivity and stability on both sides of ambient

Column Heating and Cooling in an Efficient, Compact Design

The Thermo Scientific[™] HOT POCKET[™] and Thermo Scientific[™] COOL POCKET[™] Column Temperature Controllers have a unique, space saving design for the efficient control of HPLC column temperature using a novel, soft, wraparound sealing mantle. The mantle is wrapped directly onto the column, in situ, in horizontal, vertical, or slant position. The standard size accepts column lengths up to 300mm, and columns up to 150mm can be used with the short HOT POCKET model. The inserts also allow the use of guard columns or the optional eluent pre-heater. The inserts are modular, allowing them to be easily removed or rearranged for your specific column configuration. Special inserts are available for larger or smaller diameter columns. The temperature is set on the Temperature Controller Unit, which is permanently attached to the heater/cooler. Both the actual temperature and the user selected set point are simultaneously displayed on the LED controller display.

HOT POCKET Column Heater

The HOT POCKET Column Heater has a temperature range of just above ambient to 85°C with excellent control, allowing validation of HPLC methods at accurate temperatures. HPLC method ruggedness can be investigated by exploring the sensitivity of a separation to temperature changes. The HOT POCKET is available in a standard size to accommodate column combinations up to 300mm in length, and a short version for columns up to 150mm.

It is easy to install a column into the HOT POCKET or COOL POCKET. Depending upon column length and auxiliary fixtures such as a guard column or eluent pre-heater, some of the inserts may have to be rearranged or removed through the special slot at one end. Rotate the inserts so that the groove in each is positioned in the open part of the channel. Columns are simply placed into the inserts, which are then rotated to lock the column into the channel. The insulated mantle is wrapped around the column with a Velcro[™] closure.

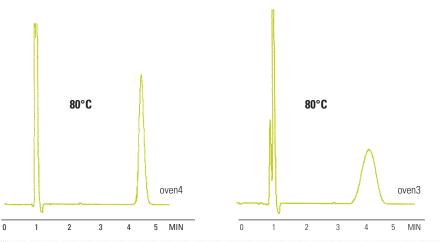
COOL POCKET Temperature Controller

The COOL POCKET Temperature Controller provides efficient control of the temperature of HPLC columns both above and below ambient, with an operational temperature range of 5°C to 55°C. The COOL POCKET Temperature Controller is ideal for chiral applications where a lower temperature may give better separation of enantiomers or other closely related compounds. It also allows you to validate HPLC methods at accurate temperatures near ambient and check HPLC method ruggedness by exploring the sensitivity of your separation to temperature changes on both sides of ambient.

Thermo Scientific Chromatography Columns and Consumables 2014-2015

HOT POCKET Column Heaters, Eluent Preheater/Precooler and COOL POCKET Chiller

Column heating or cooling in a compact, efficient design


- The Eluent Pre-Heater provides a dramatic improvement in chromatography as demonstrated by the USP method for enalapril maleate at 80°C
- For preheating or precooling the mobile phase before it enters column
- Use in temperatures above 50°C or below 15°C
- 0.005in ID

Product Specifications

	HOT POCKET	COOL POCKET
Operating Range	5°C above ambient to 85°C	5°C to 55°C
Display	Dual LED displays of actual and set point	temperatures in °C
Temperature Accuracy	± 2°C over entire range	± 2°C over entire range
Temperature Repeatability	± 1°C	± 1°C
Temperature Stability	± 0.1°C	± 0.1°C
Time to Stabilization (from ambient)	85°C in less than 30 minutes	55°C in 25 minutes, 5°C in 20 minutes
Column Capacity	Standard: up to 3/8in OD and up to 300mm in length and end-fittings up to 19mm OD (250mm length column with guard or eluent pre-heater in addition to column) Short (HOT POCKET only): up to 150mm total length (100mm column plus guard or pre-heater)	
Controller Dimensions	2.8 x 4.0 x 6.5in	2.8 x 4.0 x 6.5in
Mantle Dimensions	Standard: 1.5 x 1.5 x 17in	Standard: 1.5 x 4.0 x 17in Short: 1.5 x 1.5 x 12in
Power Cord	3 foot retractable coil cord	3 foot retractable coil cord
Weight	1lb enclosure (3lb total with power supply)	2lb enclosure (4lb total with power supply)
Power	24 VAC, 25 Watts maximum	15 VDC, 20 Watts maximum

With Eluent Pre-heater

Without Eluent Pre-heater

Effect of eluent pre-heater on efficiency

Data courtesy of Dr. Richard F. Myer, Quantitative Technologies, Inc., Whitehouse, NJ

HOT POCKET Column Heaters, Eluent Preheater/Precooler and COOL POCKET Chiller

Description	Cat. No.	Quantity
HOT POCKET Column Heater	92016	1 Each
HOT POCKET Column Heater – short version	92016-150	1 Each
COOL POCKET Column Chiller	92017	1 Each
Eluent Preheater/Precooler	92018	1 Each

ColumnOven

Exact temperature control for LC columns

- Temperature control from ambient to 90°C
- Fits up to four columns in one compartment
- Compatible with CTC autosamplers and Thermo Scientific Mass Spectrometer ion sources

Product Description

Options

The Thermo Scientific ColumnOven delivers efficient temperature control of HPLC columns. With exact temperature control to +/- 0.1°C, ColumnOven provides the highest levels of reproducibility and stability. Temperatures up to 90°C can significantly reduce backpressure when using columns packed with sub 2µm particle sizes, allowing the use of higher flow rates to accelerate the chromatography. ColumnOven 200 can accommodate up to 4 analytical HPLC columns with lengths up to 150mm while ColumnOven 300 can accommodate up to 4 analytical columns with lengths up to 250mm. Optional mounts allow ColumnOven to be secured to a CTC PAL[®] autosampler and many Thermo Scientific Mass Spectrometer ion sources.

The optional software package includes a standalone version (Windows[™] compatible) and drivers for Thermo Scientific[™] XCalibur[™] and other instrument control software.

An optional heat exchanger can be used as a connection / transfer line between injection port and column.

Product Specifications

Description	ColumnOven 200	ColumnOven 300
Column oven dimensions:	212mm x 40mm x 46mm	312mm x 40mm x 46mm
Column oven dimensions (with mounted heat shield):	212mm x 62mm x 52mm	312mm x 62mm x 52mm
Thermostated column compartment:	200mm x 21mm x 21mm	300mm x 21mm x 21mm
Remote control	LAN or serial port	LAN or serial port
Power supply	110 - 240 VAC	110 - 240 VAC
Temperature control:	Ambient to 90°C in 0.1°C increments	Ambient to 90°C in 0.1°C increments
Temperature stability:	+/- 0.1°C	+/- 0.1°C

Thermo Scientific ColumnOven

Description	Cat. No.
ColumnOven 200	66001-020
CTC Mount	66001-021
Thermo MS Mount	66001-022
ABI MS Mount	66001-023
Heat Exchanger	66001-024
Heat Exchanger (low volume)	66001-025
Software drivers	66001-026
ColumnOven 300	66001-030

Thermo Scientific Chromatography Columns and Consumables 2014-2015

SRS Pro Solvent Recycling System

Reduce mobile phase consumption by up to 90%

- Continuously monitors the output signal of the chromatographic detector, recycling the mobile phase to the solvent reservoir when the baseline is below a certain preset threshold
- Easy-to-use software is provided to configure system parameters, perform on-line monitoring and audit trail facilities
- No power adapter is required as the solvent saver is powered directly from the chromatography data system PC through a USB connection
- Recycles the mobile phase only if switched on: in case of power failure the valve remains in the waste position and the mobile phase in the reservoir remains uncontaminated
- \bullet Analog input allows unipolar or bipolar operation of the device within a range of $\pm 1V$ with an analog-to-digital converter
- TTL/contact closure for the device can be configured as start, auto-zero or valve position control input

Operational Principle

- If the input signal level exceeds this threshold value, the SRS Pro redirects the eluent flow to waste (a), taking account of the transport time from the detector to the switching valve
- When the signal returns below the threshold (b), the SRS Pro again waits for the transport delay and then switches the mobile phase back to the reservoir
- Autosampler injection marker connected to the SRS Pro zeroes signal input at the moment of injection

(a) - At start of 1st waste run (b) - After delay

Compatible with: Any HPLC detector

Product Specifications

Data Rate	1Hz
Wetted Material	PEEK
Power Source	USB port of PC
Max. Pressure	30psi/0.2MPa
Requires	1 free USB port, MS-Windows XP/2000/Vista

SRS Pro Solvent Recycling System

Description	Cat. No.	Quantity
SRS Pro solvent recycling system	66001-001	1 Each

SDG Pro Solvent Degasser

For gas-free HPLC solvents

- High efficiency in-line system
- Reliable, continuous operation
- Quick equilibration and short startup times
- Removes dissolved gases from solvents
- Used to degas the mobile phase for HPLC and can be employed in other applications where gases may interfere with the use of the system (such as an autotitrator)

Product Specifications

_

General	
Channels	4 independent
Mode of Degassing	Gas permeation through a fluoropolymer tube
Maximum Flow Rate	10mL/min
Degassing Capacity	~2ppm at 1mL/min
Dead Volume	~480µL per channel for standard channel
Materials Contacting Solvents	PEEK, Glass-filled PTFE, Teflon AF
Power	
Power Requirement if using supplied AC Adapter	100 – 240 VAC (±10%), 1A, 50 to 60Hz (±3Hz)
Power Requirement if not using supplied AC Adapter	15 – 24 VDC at 0.85 A maximum (0.5 A typical)
Wall Sockets	4 supplied with AC adapter, interchangeable: North America/Japan, U.K., Continental Europe, Australia
Installation Over-Voltage Category	II
Validation Output	
Signal	5mVDC / 1mm Hg absolute from 20 to 800mm Hg (0.100 VDC at 20mm Hg; 4.000 VDC at 800mm Hg)
Accuracy	$\pm 1.0\%$ of reading ± 0.010 VDC from 20 to 800mm Hg
Operating Conditions	
Ambient Temperature	10 to 35°C
Ambient Relative Humidity (RH)	20 to 80 % RH (without condensation)
Altitude	0 to 2000 Meters
Indoor vs. Outdoor Use	Indoor
Pollution Degree	2
Storage Conditions	
Ambient Temperature	-20 to +60°C
Ambient Relative Humidity	20 to 80% RH (without condensation)
Altitude	0 to 12000M
Physical	
Dimensions	Height: 127mm (5.0in) Width: 73mm (2.8in) Depth: 250mm (9.8in)
Weight	2.7kg (6lb).

SDG Pro

Description	Cat. No.	Quantity
SDG Pro degasser	66001-010	1 Each

Thermo Scientific Liquid Chromatography Reagents

Introduction to HPLC Ion Pair Reagents

High-purity reagents with the selectivity needed for good separation.

In the past, reverse-phase HPLC analysis of highly charged acidic and basic compounds was frustrating and resulted in poor resolution. Important biomolecules such as amino acids, peptides, organic acids, polyamines and catecholamines had to be separated by ion exchange or by suppression techniques.

Thermo Scientific Ion Pair Reagents enable you to quickly and efficiently analyze charged compounds using reverse-phase techniques. Our ion pair reagents are simply dissolved in the HPLC solvent system, resulting in the formation of stable chromatographic complexes that can be separated using reverse-phase columns.

By using the correct ion pair reagents, you achieve:

- Increased or decreased retention, permitting controlled selectivity
- Resolution of complex ionic mixtures without using ion exchange columns
- Improved peak symmetry

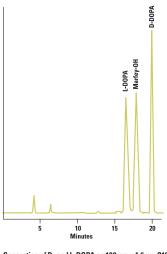
Reverse-phase ion pair chromatography theories

Two principal theories have been proposed to explain reverse-phase ion pair chromatography. In the first theory, small polar ion pair reagents react with the ionized solute, forming neutral ion pairs. The second theorizes that an active ion exchange surface is produced in which long chain, nonpolar anions and cations are absorbed by the hydrophobic stationary phase.

To optimize chromatographic separations in ion pair elution systems, high-purity reagents of exceptional optical transparency are needed. Ion Pair Reagents are specially purified for ion pair chromatography and provide the selectivity needed for good separations.

Derivatization and Visualization Reagents for HPLC

Designed to provide selectivity and improve sensitivity.


The lack of a universal HPLC detector that provides high sensitivity (as well as some degree of selectivity) established the need for suitable derivatization procedures. Derivatization is the chemical modification of an existing compound, producing a new compound that has properties more suitable for a specific analytical procedure. It is an analytical tool that can be used to provide both selectivity and improved sensitivity.

There are several requirements for derivatization protocol:

- 1. At least one acidic, polar functional group must be available for reaction on the parent compound.
- 2. A single derivative should be formed per parent compound.
- 3. The reaction should be reproducible under the given time and reaction conditions.
- 4. The reaction should proceed quickly and easily under mild conditions.
- 5. The reaction byproducts (if any) should not interfere with the chromatography, or with detection of the sample.

Pre- and post-chromatographic techniques are both used in HPLC derivatization. In addition, off-line and on-line reactions have been employed with both techniques. Prechromatographic (or pre-column techniques) offer more than greater selectivity and sensitivity in detection. Pre-column techniques can be used to enhance stability, improve resolution, improve peak symmetry and increase or decrease retention of solutes. FDAA (Marfey's Reagent) allows separation and quantification of optical isomers of amino acids (Figure 2). Post-chromatographic (or post-column) techniques are used primarily to provide selectivity and improve sensitivity.

We offer a variety of HPLC detection reagents for pre- and post-chromatographic techniques. All compounds and formulations are purified for chromatography, minimizing artifact formation.

Derivatization Reagents for HPLC

Europhics of One on	Description	Detection*	Dawa	Common to
Functional Group	Description	Detection*		Comments
Carboxylic Acid о в – с – он	р-Bromophenacylate о Br — С – СН ₂ –Br	UV	4-201	Formulation of 1.0mmol/ml p-bromophenacyl bromide and 0.005mmol/ml crown ether in acetonitrile; pre-column; nanomole detection levels: $\lambda_{max} = 260 nm^{1-7}$
Primary Amine	Dabsyl Chloride	Vis	4-204	4-N, N-dimethylaminoazobenzene-4'-sulfonyl
R-N-H H				chloride (dabsyl chloride); pre-column; nanomole detection levels: $\lambda_{max} = 436 nm^{8-14}$
	FDAA, Marfey's Reagent $0 \ge N^{+} C^{0}$ $0 \ge N^$	UV	4-200	1-fluoro-2,4-dinitrophenyl-5-L-alanine amide (FDAA); pre-column; nanomole detection levels: $\lambda_{max} = 340$ nm. For chiral separations of amino acids. ^{15, 28-29}
	Ninhydrin OH OH	Vis	4-203	Post-column; nanomole detection levels: λ _{max} = 570nm ²²
	PITC Nscs	UV	4-204	Phenylisothiocyanate (PITC); pre-column; picomole detection levels: $\lambda_{max} = 254$ nm ²³⁻²⁴
	TNBSA $0 \le 10^{\circ} \le 10^{\circ}$ $0 \le 10^{\circ} = 10^{\circ}$ $0 \le 10^{\circ}$ $0 \ge 10^{\circ}$ $0 \ge$	EC, UV	4-201	2,4,6-Trinitrobenzene-sulfonic acid (TNBSA); pre- or post-column; nanomole detection levels with EC and UV, GC - 0.85V; $\lambda_{max} = 250$ nm ²⁵⁻²⁶
Secondary Amine	Ninhydrin	Vis	4-203	Post-column; nanomole detection levels:
R-NH-R	(see structure above)		····	$\lambda_{max} = 440 nm^{22}$
	PITC (see structure above)	UV	4-204	Phenylisothiocyanate (PITC); pre-column; picomole detection levels: $\lambda_{max} = 254 nm^{23\cdot 24}$

*EC = electrochemical; F = fluorescence; UV = ultraviolet; Vis = visible.

References

- 1. Durst, H.D., et al. (1975). Anal. Chem. 47, 1797.
- 2. Borch, R.F., et al. (1975). Anal. Chem. 47, 2437.
- 3. Grushka, E. et al. (1975). J. Chromatogr. 112, 673.
- 4. Fitzpatrick, F.A. (1976). Anal. Chem. 48, 499.
- 5. Nagels, L., et al. (1980). J. Chromatogr. 190, 411.
- Ahmed, M.S., *et al.* (1980). *J. Chromatogr.* **197**, 387.
 Pierce Technical Bulletin: Preparation of Phenacyl
- and *p*-Bromophenacyl Derivatives for HPLC.
 Stocchi, V., *et al.* (1985). *J. Chromatogr.* 349, 77-82.
- Chang, J.Y., et al. (1981). Biochem. J. 199, 547-555.
- 10. Chang, J.Y., *et al.* (1982). *Biochem. J.* **203**, 803-806.
- 11. Vendrell, J., *et al.* (1986). *J. Chromatogr.* **358**, 401-413.
- 12. Chang, J.Y., *et al.* (1984). *J. Chromatogr.* **295**, 193-200.
- 13. Lin J.K., *et al.* (1980). *Anal. Chem.* **52**, 630-635.

- 14. Chang, J.Y., et al. (1981). FEBS Letters 132, 117-120.
- 15. Marfey, P. (1984). *Carlsberg Res. Comm.* **49**, 591-596.
- 16. Jones, B.N. and Gilligan, J.P. (1983). *Amer. Biotech. Lab.* **12**, 46-51.
- 17. Fiedler, H.P., *et al.* (1986). *J. Chromatogr.* **353**, 201-206.
- 18. Fried, V.A., et al. (1985). Anal. Biochem. 146, 271-276.
- 19. Jones, B.N., *et al.* (1983). *J. Chromatogr.* **266**, 471-482.
- 20. Seaver, S.S., *et al.* (Sept./Oct. 1984).
- Biotechniques 254-260.
- 21. Böhlen, P., et al. (1979). Anal. Biochem. 94, 313-321.
- 22. Stein, W.H. and Moore, S. (1949). Cold Spring Harbor Symp. Quant. Bio. 14, 179.
- 23. Heinrickson, R.L. and Meredith, S.C. (1984). *Anal. Biochem.* 137, 65-74.

- 24. Scholze, H. (1985). J. Chromatogr. 350, 453-460.
- Caudill, W.L., *et al.* (1982). *J. Chromatogr.* 227, 331.
 Caudill, W.L., *et al.* (1982). *Bioanalytical System's*
- *Current Separations* **4(4)**, 59. 27. Andrews, J.L., *et al.* (1982). *Arch. Biochem. Biophys.* **214**, 386-396.
- 28. Aberhart, D.J., et al. (1985). Anal. Biochem. 151, 88-91.
- 29. Szokan, G., et al. (1988). J. Chromatogr. 444, 115-122.

Developments in Amino Acid Analysis

Improvements in amino acid analysis by ion exchange chromatography have involved the analytical system, as well as the instrumentation. Systems have been developed (by varying buffer pH or ionic strength) that work to displace the amino acids into discrete bands. The buffer systems are compatible with single- or two-column analysis of amino acids found in protein hydrolyzates or physiological fluids. Buffer systems are determined by the counter ion used (sodium or lithium) and by the method of buffer changes introduced to the resin (step changes or gradient elution).9-15 The most commonly used buffering component, citrate, is suitable for solutions below pH7.16 Buffers are prepared either with citric acid or an alkali salt.

Unfortunately, for high-sensitivity work, citric acid is a significant contributor to amino acid contamination. Therefore, to achieve consistent analyses, it is essential to use high-purity reagents for buffer preparation. Alternatives to ion exchange are available for the separation of amino acids. Because amino acid analysis is one of the basic protein chemistry tools available, more rapid and sensitive methods for separation and quantitation are desirable.¹⁷ Several precolumn derivatization methods using reverse-phase HPLC have been developed.

Two of the most widely used of these methods involve the formation of dansyl¹⁸⁻¹⁹ or o-phthalaldehyde (OPA)²⁰⁻²⁴ derivatives of amino acids prior to HPLC analysis. Both methods offer greater sensitivity and shorter analysis time than post-column derivatization techniques. Other methods include the quantitative derivatization of amino acids with phenylisothiocyanate (PITC) and the separation and quantitation of the resulting phenylthiocarbonyl derivatives via HPLC. These derivatives are stable enough to eliminate in-line derivatization.

Note: Please refer to page 3-122 for details of references

Sample Preparation and Hydrolysis

The extraction and purification of proteins play an important role in determining amino acid content. These methods are based on one or more of their physical characteristics (e.g., solubility, molecular size, charge, polarity and specific covalent or noncovalent interactions).

The techniques commonly used to separate proteins and peptides include:

- Reverse-phase HPLC
- · Polyacrylamide gel electrophoresis
- Gel filtration
- Ion exchange chromatography
- Affinity chromatography
- The table below provides a more detailed list of methods for fractionating peptide mixtures.²⁵

Hydrolysis

Most protein samples require some form of chemical treatment before their component amino acids are suitable for analysis. Protein and peptide samples must be hydrolyzed to free amino acids from peptide linkages. Acids (usually HCI) are the most widely used agents for hydrolyzing proteins.

A simplified hydrolysis procedure involves refluxing the protein with excess HCI, then removing the excess acid in vacuum.26 The lyophilized protein then is suspended in constant boiling 6 N HCl and introduced into the hydrolysis tube. The sample is frozen by immersing the tube in dry ice and acetone. Before sealing, the tube is evacuated to avoid formation of cysteic acid, methionine sulfoxide and chlorotyrosine.²⁷ This procedure minimizes decomposition of reduced S-carboxymethylcysteine and analyzes S-carboxymethylated proteins. Hydrolysis is conducted at 110°C (with the temperature accurately controlled) for 20-70 hours by Moore and Stein's method.²⁸ After hydrolysis, residual HCI is removed in a rotary evaporator. The residue is dissolved in water and brought to the appropriate pH for addition to the analyzer column.28

Methods for the fractionation of peptide mixtures.

Technique	Properties of Peptide Molecules Exploited
Centrifugation	Solubility
Size exclusion chromatography	Size
lon exchange chromatography	Charge, with some influence of polarity
Paper electrophoresis	Charge and size
Paper chromatography	Polarity
Thin layer electrophoresis	Charge and size
Thin layer chromatography	Polarity
Polyacrylamide gel electrophoresis	Charge and size
High-performance liquid chromatography (HPLC)	Polarity
Gas chromatography	Volatility of derivatives
Counter-current extraction	Polarity; sometimes specific interactions
Affinity chromatography	Specific interactions
Covalent chromatography or irreversible binding	Disulfide bond formation; reactivity of homoserine lactone

References

- Braconnot, H. (1820). Ann. Chem. Phys. 13, 113.
- Mulder, G.J. (1848). J. Prakt. Chem. 38, 294 2.
- Kjeldahl, J.G.C.T. (1883). Z. Anal. Chem. 22, 366. 3.
- 4. Rattenbury, J.M. (1981). Amino Acid Analysis, Ellow
- Horwood, publisher, Chicester, England, Chapter 1.
- 5. Martin, A.J.P. and Synge, R.L.M. (1941). Biochem. J. 35. 1358.
- Elsden, S.R. and Synge, R.L.M. (1944). Proc. 6 Biochem Soc IX
- Synge, R.L.M. (1944). Biochem. J. 38, 285.
- Stein, W.H. and Moore, S. (1949). Cold Spring Harbor 8 Symposia Quant, Biol. 14, 179. q
- Liao, T.H., et al. (1973). Anal. Chem. 45, 2286.
- 10. Hare, P.E. (1972). Space Life Sciences 3, 354. 11. Dus, K., et al. (1966). Anal. Biochem. 14, 41.

- 12. Thomson, A.R. and Miles, B.J. (1964). Nature 203, 483.
- 13. Robinson, G.W. (1975). J. Chromatogr. 3, 416.
- 14. Benson, J.V. (1972). Anal. Biochem. 50, 477.
- 15. Benson, J.V. and Patterson, J.A. (1965). Anal. Chem. 37. 1108
- 16. Bates, R.G. and Pinching, G.D. (1949). J. Amer. Chem. Soc. 71, 1274.
- 17. Jones, B.N. and Gilligan, J.P. (1983). American Biotech Lab December 46-51
- 18. Weidmeier, V.T., et al. (1982). J. Chromatogr. 231, 410-417
- 19. DeJong, C., et al. (1982), J. Chromatogr. 241, 345-359.
- 20. Lindroth, P. and Mopper, K. (1979). Anal. Chem. 51, 1667-1674
- 21. Jones, B.N., et al. (1981). J. Liq. Chromatogr. 4, 565-586.

- 22. Turnell, D.C. and Cooper, J.D.H. (1982). Clin. Chem. 28, 527-531
- 23. Umagat, H., et al. (1982). J. Chromatogr. 241, 324-334. 24. Jones, B.N. and Gilligan, J.P. (1983). J. Chromatogr. 266, 471-482
- 25. Allen, G. (1981). Laboratory Techniques in Biochemistry and Molecular Biology, T.S. Work and R.H. Burdon, Eds., Elsevier/North-Holland, **Biomedical Press**
- 26. Moore, S. and Stein, W.H. (1963). Meth. Enzymol. 6, 819. 27. Eveleigh, J.W. and Winter, G.D. (1970). Protein
- Sequence Determination, S.B. Needleman, Ed., Springer-Verlag, pp. 92-95. 28. Moore and Stein. op. cit.

HPLC Ion Pair Reagents

Heptafluorobutyric Acid

Ion-pair reagent for the reverse-phase HPLC separation of proteins and peptides

- Typical purity is 99.7% by GC; <0.1% water
- Sequencing reagent for classical and automated Edman degradation of peptides and proteins
- Density: 1.645
- B.P. 120°C
- Packaged under nitrogen in amber glass ampules or bottles
- Clear, colorless liquid

Heptafluorobutyric Acid

Description	Quantity		Cat. No.	Quantity
Heptafluorobutyric Acid, Sequencing Grade	100mL	Х	TS-25003	1 Each
Heptafluorobutyric Acid, HPLC Grade	10 x 1mL ampules		TS-53104	1 Pack
Hoptandorobatyne / Iola, In Eo Grado			10 00104	TTUOK

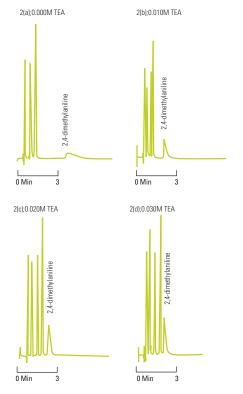
1. Hearn, M.T.W. and Hancock, W.S. (1979). Trends Biochem. Sci. 4, N58-N62.

2. Bennett, H.P.J., et al. (1980). J. Liquid Chromatogr. 3, 1353-1366.

3. Bennett, H.P., et al. (1981). *Biochemistry.* 20, 4530-4538.

X in the ordering table indicates that hazardous shipping charges apply.

Triethylamine (TEA)


Ideal for HPLC separation and analysis of peptides

Triethylamine is an ion-pairing reagent that alters selectivity in reverse-phase HPLC separations. By pairing with peptides, it effectively sharpens peaks, resulting in improved peak resolution.

- 99.5% triethylamine purity, allowing sensitive peptide detection at low UV wavelengths in reverse-phase HPLC peptide separation systems
- Packaged in amber glass bottles with protective PTFE-lined fluorocarbon caps for reagent integrity
- Has a low UV absorbance to provide the most sensitive detection across all wavelengths

Properties of Triethylamine

- Alternate names TEA, Diethylethanamine
- Molecular formula C₆H₁₅N
- Molecular weight 101.19
- Density 0.726g/mL

Triethylamine (TEA)

Description	Quantity	Cat. No.	Quantity
Triethylamine, HPLC Grade	25g	TS-53101	1 Each
Triethylamine, Sequencing Grade	100g	X TS-25108	1 Each

X in the ordering table indicates that hazardous shipping charges apply.

Formic Acid Ampules

Well-suited for HPLC and mass spectrometry applications

Formic acid is a component found in reverse-phase mobile phases to provide protons for LC/MS analysis. The presence of a low concentration of formic acid in the mobile phase is also know to improve the peak shapes of the resulting separation. Unlike trifluoroacetic acid (TFA), formic acid is not an ion-pairing reagent, and it does not suppress MS ionization of polypeptides when used as a mobile phase component.

- Prescored, nitrogen-flushed, amber glass to protect formic acid from light and moisture
- 99% purity for consistent LC baselines and no interference introduced into LC and mass spectrometry applications
- Convenient format simplifies preparation of gradient and isocratic mobile phases containing 0.1% (v/v) formic acid in water or acetonitrile
- Contents of a single vial in a final volume of 1L solvent yields a mobile phase of the most common formic acid concentration

Formic Acid Ampules

Description	Quantity	Cat. No.	Quantity
Formic Acid 99+%	10 x 1mL ampules	TS-28905	1 Each

For complex peptide separations, the key to success can be to vary selectivity. Varying mobile phase composition on the same column can change selectivity enough to resolve peptide that would otherwise overlap. The TFA concentration is usually specified as 0.1% for reverse-phase HPLC of peptides. For reproducible separations from run-to-run or from lab-to-lab, it is essential to make concentrations the same.

Formic Acid MW 46.03

Derivation and Visualization Reagents for HPLC Trifluoracetic Acid (TFA)

Routinely used ion-pairing agent in reversed-phase peptide separations

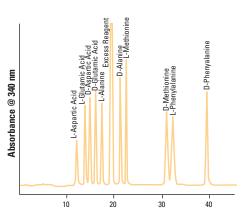
- Purity: >99.5% TFA and exceptional clarity allows sensitive, nondestructive peptide detection at low UV wavelengths
- High-performance packaging: Packaged under nitrogen in amber glass with protective TFE-lined fluorocarbon caps to ensure TFA integrity
- Choice of formats for convenience: 1mL ampules can prepare 1L of 0.1% v/v TFA solution for the mobile phase in reverse-phase chromatography in moments

Trifluoracetic Acid (TFA)

Description	Quantity	Cat. No.	Quantity
Trifluoracetic Acid, Sequencing Grade	500mL	X TS-28901	1 Each
Trifluoracetic Acid, Sequencing Grade	100g	X TS-28903	1 Each
Trifluoracetic Acid, Sequencing Grade	10 × 1mL	X TS-28904	1 Pack
Trifluoracetic Acid, Sequencing Grade	1g	X TS-28902	1 Each

X in the ordering table indicates that hazardous shipping charges apply.

FDAA, Marfey's Reagent


Makes separation and quantitation of optical isomers of amino acids by reverse-phase chromatography quick and easy

- Optical isomers of amino acids derivatization complete in just 90 minutes
- Derivatives have an absorption coefficient of ~3 x 10⁴
- Derivatives can be detected by UV at 340nm with picomole sensitivity

FDAA (Marfey's Reagent) MW 272.19

FDAA, Marfey's Reagent

Description	Quantity	Cat. No.	Quantity
FDAA, Marfey's Reagent	50mg	TS-48895	1 Each

Thermo Scientific Chromatography Columns and Consumables 2014-2015

p-Bromophenacylate Reagent

Gives quantitative yields with few or no side reactions

- Premixing of phenacylbromide and crown ether is not necessary
- Derivatization is both rapid and quantitative, with yields of >95% in 15 to 20 minutes at 80°C
- Excess reactants do not interfere
- · Large excess of alkylating reagent is not necessary
- · Small amounts of water or alcohol do not interfere
- If isolation is desired, products are usually crystalline

p-Bromophenacylate Reagent

Description	Quantity	Cat. No.	Quantity
p-Bromophenacylate Reagent	10mL	TS-48891	1 Each
1 Durot H.D. et al (1075) Anal Cham 47 1707			

1. Durst, H.D., et al. (1975). *Anal. Chem.* **47**, 1797. 2. Borch, R.F., et al. 1975). *Anal. Chem.* **47**, 2437.

3. Grushka, E., et al. (1975). J. Chromatogr. **112**, 673.

4. Fitzpatrick, F.A., et al. (1976). Anal. Chem. 48, 499.

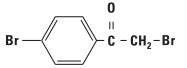
TNBSA (Trinitrobenzene Sulfonic Acid)

An excellent choice for spectrophotometric detection

- Couples with primary amines, sulfhydryls and hydrazides in aqueous solution at pH 8, without undesirable side reactions
- Excellent for solution or solid phase analysis
- Suitable for qualitative and quantitative estimation of biomolecules; including amino acids, eptides or proteins
- Chromogenic, O_{max} = 335nm
- Reacts readily with primary amino groups of amino acids in aqueous format at pH 8 to form yellow adducts
- · No colored derivatives are formed with secondary amino acids proline and hydroxyproline
- Colored derivatives are monitored at 345nm and have extinction coefficients in range of 1-1.5 x 10⁴

TNBSA

Description	Quantity	Cat. No.	Quantity
TNBSA	100mL	X TS-28997	1 Each


1. Goodwin, J.F. and Choi, S-Y. (1970). *Clinical Chemistry.* 16, 24-31.

2. Snyder, S.L. and Sobocinski, P.Z. (1975). Anal. Biochem. 64, 284-288.

3. Drozdovskaya, N.R., et. al. (1982). *FEBS Lett.* **150**, 385. 4. Takahashi, S., et al. (1984). *Chem. Lett. (Jpn).* **1**, 127

4. Takanashi, S., et al. (1984). Unem. Lett. (Jpn). 1, 121

X in the ordering table indicates that hazardous shipping charges apply.

p-Bromophenacylate MW 277.94

Hydrolysis Reagents

Constant Boiling (6N) Hydrochloric Acid

Sequencing-grade reagent for total protein hydrolysis

- Hydrolyzes peptides in 6 hours at 150°C
- Specially purified to give ninhydrin-negative blank on hydrolysis
- Packaged in prescored ampules to eliminate contamination and ensure product integrity

Constant Boiling (6N) Hydrochloric Acid

Description	Quantity	Cat. No.	Quantity
Hydrochloric Acid 6N	10 × 1mL	TS-24308	1 Pack

1. Eveleigh, J.W. and Winter, G.D. (1970). Protein Sequence Determination, Ed Needleham, S.B., Springer-Verlag, pp. 92-95.

 Blankenship, et al. (1989). High-sensitivity amino acid analysis by derivatization with o-Phthaldialdehyde and 9-Fluorescence detection: applications in protein structure determination. Anal. Biochem. 178, 227-232.

3. Hurley, J.B., et al. (1984). Isolation and characterization of a cDNA clone for the subunit of bovine retinal transducin. Proc. Natl. Acad. Sci. USA. 81, 6948-6952.

 Lee, K. et al. (1979). Derivatization of cysteine and cystine for fluorescence amino acid analysis with the o-Phthaldialdehyde/2mercaptoethanol reagent. J. Biol. Chem. July 25, 6248-6251.

Amino Acid Standard H

High-purity calibration standard for protein hydrolysates

- Uses L-form configuration to permit standardization of microbial and other assays
- Molar concentration verified by conventional amino acid analysis methods
- With the exception of cystine, each amino acid is supplied at a concentration of $2.5 \mu moles/mL$ in 0.1N HCl

The following amino acids are included in Amino Acid Standard H:

L-alanine, Ammonia [(NH4)2SO4], L-Arginine, L-Aspartic Acid, L-Cystine, L-Glutamic Acid, Glycine, L-Histidine, L-Isoleucine, L-Leucine, L-Lysine HCI, L-Methionine, L-Phenylalanine, L-Proline, L-Serine, L-Threonine, L-Tyrosine, L-Valine.

Amino Acid Standard H

Description	Quantity	Cat. No.	Quantity
Amino Acid Standard H	10 × 1mL	TS-20088	1 Pack

When kept frozen, an unopened vial has an indefinite storage life. Once the seal is broken, the reagent has a maximum storage life of six months. Store frozen between uses.

Amino Acid Detection Reagents

Ninhydrin

The reagent of choice for detection of amino acids

- Used in amino acid chromatography
- Offers superb color response and low blank
- Indefinitely stable and requires no refrigeration

Ninhydrin

Description	Quantity	Cat. No.	Quantity
Ninhydrin	500g	TS-21003	1 Each

1. Stein, W.H. and Moore, S. (1949). Cold Spring Harbor Symp. Quant. Biol. 14, 179.

Moore, S. (1968). Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J. Biol. Chem. 243(23), 6281-6283.
 James, L.B. (1978). Amino acid analysis: ninhydrin reaction with titanous chloride. J. Chromatogr. 152, 298-300.

Indefinitely stable. No refrigeration required. Keep bottle tightly sealed. Avoid exposure to direct sunlight and ammonia.

Ninhydrin MW 178.14

Accising interesting and a second sec

High-Purity Pre-Column Derivatization Reagents

Dabsyl Chloride

Recrystallized twice

- For the precolumn derivatization and detection of amino acids in visible light down to sub-picomolar levels
- Analysis of 10-30ng of protein hydrolysates
- Analysis of peptides and determination of C-terminal sequence of polypeptides
- Analysis of phosphoamino and amino acid amides
- Analysis of amino acid neurotransmitters in mouse brain

Dabsyl Chloride

Description	Quantity	Cat. No.	Quantity
Dabsyl Chloride (4-N,N Dimethylaminoazobenzene-4- sulfonyl chloride)	500g	X TS-21720	1 Each
1. Chang, J.Y., et al. (1981). <i>Biochem. J.</i> 199 , <i>547</i> -			

2. Chang, J.Y., et al. (1982). *Biochem. J.* **199**, *803-806*.

3. Chang, J.Y. (1984). J. Chromatogr. **295**, 193-200.

Chang, J.Y., et al. (1981). FEBS Lett. 132, 117-120.
 Vendrell, J. et al. (1986). J. Chromatogr. 358, 401-413.

6. Lin, J.K., et al. (1980). *Clin. Chem.* **26**, *579-583*.

7. Chang, J.Y., et al. (1983). *Methods. Enzymol.* **92**, 41-48.

8. Stocchi, V., et al. (1985). J. Chromatogr. **349**, 77-82.

X in the ordering table indicates that hazardous shipping charges apply.

PITC (Phenylisothiocyanate)

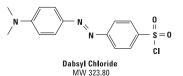
High-purity reagent for pre-column quantitative derivatization of amino acids by reverse-phase HPLC

• Also known as Edman's Reagent

- Reacts readily with amino acids in 5 to 10 minutes at room temperature
- Resulting phenylthiocarbamyl derivatives can be separated and quantified in 30 minutes using reverse-phase HPLC to produce stable products with all amino acids including proline

PITC (Phenylisothiocyanate)

Description	Quantity	Cat. No.	Quantity
PITC (Edman's Reagent)	10 × 1mL	TS-26922	1 Pack


1. Heinrikson, R.L. and Meridith, S.C. (1984). Anal. Biochem. 136, 65-74.

2. Scholze, H. (1985). J. Chromatogr. 350, 453-460.

3. Janssen, et al. (1986). Chromatogr. 22(7-12).

Evert, R.F. (1986). Anal. Biochem. 154, 431-435

HPLC and Spectrophotometric Grade Solvents

Ultrapure solvents are carefully packed for thorough protection

- Distilled in glass, filtered through 0.2µm TFE membranes and packed in solvent-rinsed, amber glass bottles
- TFE-lined screw caps seal bottles

Acetonitrile, HPLC Grade, Physical Properties

- UV Cutoff: 190nm
- Optical Absorbance: <0.02 at 220nm
- Refractive Index at 25°C: 1.342

Water, HPLC Grade, Physical Properties

- UV Cutoff: 190nm
- Optical Absorbance: <0.005 at 220nm
- Refractive Index at 25°C: 1.332

Dimethylformamide (DMF), Sequencing Grade, Physical Properties

- HCON(CH₃)₂
- Purity (GC): ≥99%
- MW: 73.09
- Density: 0.944
- B.P. 153°C
- Water: 0.1%

HPLC and Spectrophotometric Grade Solvents

Description	Quantity	Cat. No.	Quantity
Acetonitrile	1L	X TS-51101	1 Each
Water	1L	TS-51140	1 Each
Dimethylformamide (DMF)	50mL	X TS-20673	1 Each
Dimethyl sulfoxide (DMSO)	950mL	X TS-20688	1 Each
Pyridine	100g	X TS-25104	1 Each

X in the ordering table indicates that hazardous shipping charges apply.

Dimethylsulfoxide (DMSO), Sequencing Grade, Physical Properties

- C_2H_6OS
- Purity (GC): >99.5%
- MW: 78.13
- Density: 1.101
- Water: ≤0.2%

Pyridine

- C_5H_5N
- Purity (GC): ≥99%
- MW: 79.10
- Density: 0.978
- B.P. 115°C

Peptide Standards

Peptide Retention Standard

Allows accurate prediction of elution time for peptides of known amino acid composition up to 20 residues in length

- Save time in peptide purification
- Simplify identification of specific peptides in a complex mixture
- Increase the efficiency of predicting peptide elution profiles
- Determine the relative order of peptide elution of a complex mixture
- Predict the HPLC retention time for peptides of known amino acid composition on reverse phase HPLC columns
- Monitor column performance: efficiency, selectivity and resolution during column ageing
- Compare reverse-phase columns from different manufacturers
- Evaluate reverse-phase supports of varying n-alkyl chain lengths and ligand densities

Retention times are predicted by totaling the values that represent the contribution in minutes of each amino acid residue and the peptide terminal groups. Retention time is dependent upon the molecular weight of the peptide. The effect on retention is relatively unimportant with a small peptide, but it increases with the size of the molecule. The accuracy of predicting peptide retention time significantly decreases beyond 20 residues. To ensure accuracy, a peptide standard is used to correct for instrument variation, column aging, n-alkyl chain length variation and ligand density.

Peptide Retention Standard

Description	Quantity	Cat. No.	Quantity
Peptide Retention Standard, S1-S5	1 vial	TS-31700	1 Each

1. Guo, D., et al. (1985). Proceedings of the Ninth American Peptide Symposium, Published by Thermo Fisher Scientific,

Rockford, Illinois, page 23.

4. Mant, C.T. and Hodges, R.S. (1986). *L.C. Magazine Liq. Chrom. and HPLC* **4(3)**, 250.

5. Guo, D., et al. (1987). J. Chromatogr. **386**, 205-222.

Peptide Retention Time Calibration Mixture

Heavy peptide mixture for column assessment and prediction of peptide retention times

- Assessment of chromatography and MS instrument performance
- Prediction of peptide retention across multiple instrument platforms
- Prediction of peptide retention time from sequence using calculated hydrophobicity factor
- Optimization of scheduled MS acquisition windows for improving quantification and increased multiplexing
- Internal standard to normalise for variation in retention times and peak intensities between runs

Thermo Scientific Peptide Retention Time Calibration Mixture

Description	Quantity	Cat. No.	Quantity
Peptide Retention Time Calibration Mixture, 0.5pmol/µL	50µL	TS-88320	1 Each
Peptide Retention Time Calibration Mixture, 5pmol/µL	200µL	TS-88321	1 Each

^{2.} Guo, D., et al. (1986). *J. Chromatogr.* **359**, 499-517. 3. Guo, D., et al. (1986). *J. Chromatogr.* **359**, 519-532.

Dionex Ion Standard Concentrates

- The Dionex IonPac ready-to-use ion standards are designed for routine anion or cation determinations
- All standards are traceable to NIST Standard Reference Materials
- Shipped with a Certificate of Analysis verifying the concentration

Description	Volume (mL)	Cat. No.
Combined Five Anion Standard	100	037157
Combined Seven Anion Standard I	50	056933
Combined Seven Anion Standard II	100	057590
Fluoride Standard (1000mg/L)	100	037158
Chloride Standard (1000mg/L)	100	037159
Sulfate Standard (1000mg/L)	100	037160
Combined Six Cation Standard-I	50	040187
Combined Six Cation Standard-II	50	046070

MS Standard Concentrates

• MS standards for validation and calibration of the MSQ System

Description	Cat. No.
Kit of 2 standards for performance validation in ESI and APCI modes	061496
Standard for Mass Calibration (All MSQ Models)	062917

Perchlorate Internal Standard

• For the quantification of perchlorate at low parts-per-trillion levels using mass spectrometric detection. Contains stable-labeled perchlorate (1mg/L).

Description	Cat. No.
Perchlorate-ISTD. ¹⁸ O Internal Standard for Perchlorate	062923

Haloacetic Acid Internal Standards

- Ready-to-use internal standards for haloacetic acid analysis using electrospray-mass spectrometric detection
- Stable-labeled internal standards prepared in MTBE (methyl-t-butyl ether), 1mL ampule plus empty vial

Description	Volume (mL)	Cat. No.
Monochloroacetic Acid -2-13C Internal Standard, 1000mg/L in MtBE	1	069406
Monobromoacetic Acid -1-13C Internal Standard, 1000mg/L in MtBE	1	069407
Dichloroacetic Acid -2-13C Internal Standard, 1000mg/L in MtBE	1	069408
Trichloroacetic Acid -2-13C Internal Standard, 1000mg/L in MtBE	1	069409

Ion Pairing Reagents

• Highly purified ion-pairing reagents are used in mobile phase ion chromatography (MPIC), combining reversed-phase ion-pair chromatography with chemical suppression

Description	Volume (mL)	Cat. No.
Tetrabutylammonium hydroxide (TBAOH)	500	035360
Tetrapropylammonium hydroxide (TPAOH)	500	035363
Hexanesulfonic acid (HSA)	500	035361
Octanesulfonic acid (OSA)	500	035362

Thermo Scientific Chromatography Columns and Consumables 2014-2015

LC and LC-MS Instrument Accessories, Consumables and Spare Parts

Our liquid chromatographs and mass spectrometers advance scientific knowledge, enable drug discovery, improve manufacturing processes, and protect people and the environment. When your instrument is maintained with Thermo Scientific parts, you can expect the best results and highest productivity, keeping your research or processes moving smoothly.

Thermo Scientific Dionex UltiMate 3000 Systems Portfolio

Basic Automated System

The Thermo Scientific[™] Dionex[™] UltiMate[™] 3000 Basic Automated System is optimized for reliability and ease-of-use with routine LC applications, and also offers full UHPLC compatibility. The ACC-3000 Autosampler Column Compartment is at the heart of the system. Its unique instrument design combines a rugged sample injection principle with a powerful column oven.

Standard (SD) LC Systems

UltiMate 3000 Standard (SD) Systems are designed to meet current and future challenges. System components provide low extra-column and gradient delay volume for high separation efficiency and low gradient response times, as well as superior mixing performance. They offer full support of all HPLC applications and provide UHPLC compatibility – allowing you to move to UHPLC whenever you are ready.

Rapid Separation (RS) LC Systems

UltiMate 3000 Rapid Separation (RS) Systems provides unrivaled performance and flexibility in UHPLC. Precision-engineered instrumentation, advanced data processing, and highly optimized chemistries meet all chromatographic performance challenges. With an outstanding product portfolio, UltiMate 3000 RS Systems offers industry leading versatility covering the maximum range of UHPLC applications, while keeping fully compatible to conventional LC.

Biocompatible Rapid Separation (BioRS) LC Systems

UltiMate 3000 Biocompatible Rapid Separation (BioRS) Systems are powered by UltiMate 3000 Rapid Separation technology to support the high pressures required for the separation of bioanalytes on high resolution bio UHPLC columns. This state-of-the-art technology combined with a biocompatible, low-dispersion flow path, provides the highest peak capacity and sensitivity for complex samples, whether proteins, peptides, or biotherapeutics. Bio UHPLC enables faster gradients and shorter run times compared to conventional Bio LC analysis. This results in increased sample throughput in typical modes of biochromatography.

x2 Dual Rapid Separation LC Systems

UltiMate 3000 x2 Dual LC Systems are the ideal choice to maximize sample throughput of conventional HPLC and UHPLC separations by combining the flexibility of ternary solvent selection with the productivity and performance of x2 Dual technology.

Advanced chromatographic techniques such as parallel, tandem, and two-dimensional LC become a realistic and practical option, even at ultrahigh speed. Operate conventional or ultrahigh speed applications, increase sample throughput, achieve higher chromatographic resolutions, or automate tedious sample preparation steps such as analyte enrichment or matrix elimination.

XRS LC Systems

UltiMate 3000 XRS Systems are highly LC/MS optimized quaternary UHPLC systems and the best choice for ultrahigh resolution and high speed UHPLC MS-frontend solutions. This system is the ideal solution for high sample throughput and ultra high resolution chromatography.

Accessories, Consumables and Spare Parts for UltiMate 3000 Instruments

Accessories for the Use with UltiMate 3000 Instruments

Description	Quantity	Cat. No.
Drainage kit for UltiMate 3000 systems	1	6040.0005
Menu pen	1	6300.0100
Installation tool for Viper capillaries with torque toothing	1	6040.2314
HPLC Troubleshooting Guide poster	1	6040.0050

UltiMate 3000 Solvent Racks

Consumables and Spare Parts for UltiMate 3000 Solvent Racks

Description	Quantity	Cat. No.
Solvent supply line (analytical)	1	6030.2548
Solvent supply line from analytical degasser to pump head	1	6030.2546
Bottle cap for solvent reservoirs	4	6270.0013
Caps and retaining guides for solvent bottles (5 caps and 10 retaining guides)	1	6030.9101
Degasser Channel Upgrade Kit for SRD	1	6035.0089
External power supply unit	1	6510.0004

Also use our HPLC Troubleshooting Guide as a Mobile App for iPhone, Android and Windows phones.

UltiMate 3000 Pumps

Accessories for the Use with UltiMate 3000 Pumps

					For use with		
Description	Quantity	Cat. No.	SD pumps	RS pumps	BM pumps	XRS pumps	BX pumps
Filter holder for solvent filter	6	6268.0115	Х	Х	Х		
Filter holder for solvent filter	2	6268.0116					Х
Filter frit (SST, porosity: 10µm)	10	6268.0110	Х	Х			
Filter frit (Ti, biocompatible, porosity: 10µm)	10	6828.0111		Х	Х		Х
Filter frit (PEEK, porosity: 10µm)	10	6828.0117			Х		
Solvent lines kit with filter frits (SST, porosity: 20µm)	1	6043.8109			••••••	Х	

Spare Parts for UltiMate 3000 Pumps

					For use with	1	
Description	Quantity	Cat. No.	SD	RS	BM	XRS	BX
Check Valves			pumps	pumps	pumps	pumps	pumps
Check valve, cartridge (ceramics) for the inlet and outlet valve	1	6041.2301	Х	Х	Х		Х
Check valve cartridge for the inlet and outlet valve	1	6043.0145				Х	
Pistons							
Pistons (sapphire)	2	6040.0042	Х	Х	Х		
Pistons (ceramics)	2	6040.0842	•••••••••••••••••••••••••••••••••••••••			•••••••••••••••••••••••••••••••••••••••	Х
Pistons (sapphire)	2	6043.0169	•••••••••••••••••••••••••••••••••••••••			Х	
Piston Seals							
Piston seal (in plate of seal wash system) Normal Phase	2	6040.0306	Х	Х	Х		
Piston seal kit (in plate of seal wash system) Reversed Phase (2 seals and 1 support ring)	1	6040.9010					Х
Piston seal (main piston seal) Reversed Phase	2	6040.0304	Х				
Piston seal (main piston seal) Reversed Phase	2	6266.0305		Х			
Piston seal kit (main piston seal) Reversed Phase (2 seals and 1 support ring)	1	6025.2012			Х		
Piston seal kit (main piston seal) Reversed Phase (2 seals and 1 support ring)	1	6040.9010					Х
Piston seal kit (main piston seal) Normal Phase (2 seals and 1 support ring)	1	6040.9011					Х
Piston seal kit Reversed phase (2 primary piston seals and 2 secondary piston seals)	1	6043.0295				Х	
Support Rings							
Support ring for pistons seals	2	6040.0012	Х	Х			
Support ring/pistons seal kit Reversed Phase (2 piston seals and 1 support ring)	1	6025.2012			Х		
Support ring/pistons seal kit Reversed Phase (2 seals and 1 support ring)	1	6040.9010					Х
Support ring/pistons seal kit Normal phase (2 seals and 1 support ring)	1	6040.9011					Х

Manual Sample Injection Valves for the Use with UltiMate 3000 Pumps

Description	Quantity	Cat. No.
Manual injection valve kit, pressures > 50 MPa	1	6040.0610
Manual injection valve kit, biocompatible, pressures > 34 MPa	1	6042.0600
Motorized manual injection valve kit	1	6040.0110
Mounting kit for manual injection valve	1	6040.0611
Syringe for use with the manual injection valve		
100µL syringe	1	6035.0665
5mL syringe	1	6035.0670
1mL syringe	1	6040.0620

Mixing Systems for the Use with UltiMate 3000 Pumps

			Cat. No.		
Description	Quantity	SD pumps ¹	RS pumps		
Mixer for 35µL mixing volume	1	6040.5000	6042.5000		
Mixer for 100µL mixing volume	1	6040.5100	6042.5100		
Mixer for 200µL mixing volume	1	6	6040.5110		
Mixer for 400µL mixing volume	1	6	040.5310		
Mixer for 800µL mixing volume	1	6	040.5750		
Mixer for 1550µL mixing volume	1	6	040.5450		
loveont ISO 2100					

¹except ISO-3100

Normal Phase Upgrade Kits for UltiMate 3000 Pumps

Description	Quantity	Cat. No.
Normal Phase Kit for HPG-3200BX	1	6040.1975
Normal Phase Kit for SD pumps	1	6040.1972

Maintenance Kits for UltiMate 3000 Pumps

Description	Quantity	SD pumps	RS pumps	BM pumps	XRS pumps	BX pumps
Maintenance kit for ISO-3100	1	6040.1950	-	6042.1950	-	-
Maintenance kit for HPG-3x00	1	6040.1953	6040.1956A	-	-	-
Maintenance kit for LPG-3400	1	6040.1951	6040.1954A	6042.1951	6043.1954	6042.1954(NP) 6042.1953(RP)
Maintenance kit for DGP-3600	1	6040.1952	6040.1955A	6042.1952	-	_

UltiMate 3000 Autosamplers

Sample Racks for the Use with UltiMate 3000 WPS Autosamplers and UltiMate 3000 ACC Autosampler Column Compartments

			For us	e with
Description	Quantity	Cat. No.	WPS	ACC
Sample Racks				
Sample Rack (10 position and/or normal well plates) for 10mL vials, 22.5mm×46mm	1	6820.4086	Х	Х
Sample Rack (22 position) for 4mL vials, 15mm×45mm, cylindrical	1	6820.4084	Х	Х
Sample Rack (40 position) for 2mL vials, 12mm×32mm, cylindrical	1	6820.4070	Х	Х
Sample Rack (40 position and/or normal well plates) for 1.1mL vials, 12mm×32mm, conical	1	6820.4087	Х	Х
Sample Rack (40 position) for 0.5mL Eppendorf tubes	1	6820.4096	Х	Х
Sample Rack (40 position) for 1.5mL Eppendorf tubes	1	6820.4094	Х	Х
Sample Rack (72 position and/or normal well plates) for 1.2mL vials, 8mm×40mm, cylindrical	1	6820.4090	Х	Х
Sample Rack (72 position and/or normal well plates) for 0.3mL vials, 8mm OD, cylindrical	1	6820.4091	Х	Х
Sample Rack (72 position) for 0.3mL micro dialysis vials	1	6820.4097	Х	Х
Support Racks for Well Plates				
Support rack for deep well plates (34 – 46mm high)	1	6820.4079	Х	
Support rack for deep well plates (30 – 36mm high, 96 or 384 wells)	1	6820.4083	Х	
Support rack for deep well plates (20 – 32mm high, 96 or 384 wells)	1	6820.4089	Х	

Find the Thermo Fisher Scientific Vials and Closures portfolio on page 2-001.

Optional Accessories for the Use with UltiMate 3000 WPS-3000 Split Loop Autosamplers

					For use with		
Description	Quantity	Cat. No.	WPS- 3000TXRS/ WPS-3000(T) RS	WPS- 3000TBRS	WPS-3000(T) SL Analytical	WPS- 3000TBSL	WPS-3000(T SL Semiprep
Needles							
Needle (SST) Viper compatible	1	6820.2432	X/X		Х		
Needle (ceramic) Viper compatible	1	6841.2420		Х			
Needle (SST)	1	6820.2403				Х	
Needle (SST)	1	6820.2419					Х
Needle Seat Capillaries							
Needle seat capillary, 3.1µL, Viper (SST)	1	6820.2464	X/X		Х		
Needle seat capillary, 3.1µL, Viper (PEEK)	1	6827.2408				Х	
Needle seat capillary, 3.1µL, Viper (MP35N™)	1	6841.2464		Х			
Needle seat capillary, 1µL, Viper (MP35N)	1	6841.2472		Х			
Needle seat capillary, 1µL, Viper (SST)	1	6820.2472	X/-				
Needle seat capillary, 24µL, Viper (SST)	1	6820.2409					Х
Sample Loops - SST							
25µL Sample loop, Viper	1	6820.2452	X/X		Х		
100µL Sample loop, Viper	1	6820.2451	X/X		Х		
250µL Sample loop, Viper	1	6820.2453	—/X		Х		
500µL Sample loop, Viper	1	6820.2454	—/X		Х		
1000µL Sample loop	1	6820.2429					Х
Sample Loops – MP35N							
25µL Sample loop, Viper	1	6841.2452		Х			
100µL Sample loop, Viper	1	6841.2451		Х			
250µL Sample loop, Viper	1	6841.2453		Х			
500µL Sample loop, Viper	1	6841.2454		Х			
Sample Loops – PEEK							
100µL Sample loop	1	6820.2431				Х	
Buffer Loops							
Buffer loop, 100µL, Viper (SST)	1	6820.2466	X/X		Х	Х	
Buffer loop, 100µL, Viper (MP35N)	1	6841.2466		Х			
Buffer loop, > 250µL, Viper (SST)	1	6820.2468					Х
Buffer loop, > 250µL, Viper (MP35N)	1	6841.2468		Х			
Syringes							
25µL Syringe	1	6822.0001	X/X	Х	Х	Х	Х
100µL Syringe	1	6822.0002	X/X	Х	Х	Х	Х
250µL Syringe	1	6822.0003	X/X	Х	Х	Х	Х
500µL Syringe	1	6822.0004	X/X	Х	Х	Х	Х
1000µL Syringe	1	6822.0005	X/X	Х	Х	Х	Х
2500µL Syringe	1	6822.0006	X/X	Х	Х	Х	Х

Injection Volume Kits for the Use with UltiMate 3000 WPS-3000 Split Loop Autosamplers

			For use with				
Description	Quantity	Cat. No.	WPS-3000(T)RS	WPS-3000TBRS	WPS-3000(T)SL Analytical	WPS-3000(T)SL Semiprep	
Injection volume kit (250µL), Viper	1	6822.2442	Х		Х		
Injection volume kit (250µL), Viper	1	6841.2442		Х			
Injection volume kit (500µL), Viper	1	6822.2443	Х		Х		
Injection volume kit (500µL), Viper	1	6841.2443		Х			
Injection volume kit (1000µL)	1	6822.2436				Х	

Optional Accessories for the Use with UltiMate 3000 WPS-3000 Pulled Loop Autosamplers

			For use with				
Description	Quantity	Cat. No.	WPS-3000(T)PL RS Nano/Cap	WPS-3000TBPL Analytical	WPS-3000TFC	WPS-3000TBFC	
Modification Kits							
Nano/Cap modification kit	1	6824.0030			Х		
Nano/Cap modification kit	1	6825.0030				Х	
Upgrade kit PAEK	1	6821.0045	Х			•	
Front cover, transparent	1	6820.1427	Х	Х	Х	Х	
Needles							
2.4µL Needle, nanoViper	1	6820.3010	Х		X1	X1	
3.6µL Needle, Viper	1	6820.3023	Х	Х	X1	X1	
15µL Needle, Viper	1	6820.3025	X ²	Х	Х	Х	
15µL Needle, nanoViper	1	6820.3115	X ²	Х	Х	Х	
Sample Loops – nanoViper							
1µL Sample loop, nanoViper	1	6826.2401	Х		X1	X1	
5µL Sample loop, nanoViper	1	6826.2405	Х	•	X1	X1	
10µL Sample loop, nanoViper	1	6826.2410	Х	•••••••	X ¹	X ¹	
20µL Sample loop, nanoViper	1	6826.2420	Х		X1	X1	
50µL Sample loop, nanoViper ²	1	6826.2450	Х	Х	Х	Х	
125µL Sample loop, nanoViper ²	1	6826.2412	Х	Х	Х	Х	
Sample Loops – SST							
50µL Sample loop	1	6824.0019			Х		
250µL Sample loop	1	6824.0020		•	Х	•••••••••••••••••••••••••••••••••••••••	
Sample Loops – PEEK							
5µL Sample loop	1	6823.0016	Х	Х		Х	
10µL Sample loop	1	6823.0017	Х	Х		Х	
20µL Sample loop	1	6823.0018	Х	Х		Х	
50µL Sample loop	1	6823.0019	χ²	Х		Х	
125µL Sample loop	1	6821.0032	X ²	Х		Х	
250µL Sample loop	1	6823.0020		Х		Х	
Buffer Tubings							
50 μL Buffer tubing (SST)	1	6820.0019	Х		X1		
50 μL Buffer tubing (PEEK/PTFE)	1	6821.0019	Х3	•		X1	
500 µL Buffer tubing (SST)	1	6820.0020	Х	•••••••	Х	•	
500 µL Buffer tubing (PEEK/PTFE)	1	6821.0020	Х3	Х		Х	
1000 µL Buffer tubing (SST)	1	6820.0056		•••••••••••••••••••••••••••••••••••••••	Х	•••••••••••••••••••••••••••••••••••••••	
1000 µL Buffer tubing (PEEK/PTFE)	1	6821.0022		Х		Х	
2000 µL Buffer tubing (SST)	1	6820.0021	Х	•		•	
2000 µL Buffer tubing (PEEK/PTFE)	1	6821.0021	X ³	•••••••		•••••••	
Syringes							
25µl Syringe	1	6822.0001	Х		X ¹	X1	
100µl Syringe	1	6822.0002	Х	Х	Х	Х	
250µl Syringe	1	6822.0003	X4	Х	Х	Х	
500µl Syringe	1	6822.0004	X ⁴	•		•	
1000µl Syringe	1	6822.0005	X4	•		•	
Syringe upgrade kit (250µL) ⁴	1	6820.0031	Х	•••••••		••••••	
Syringe upgrade kit (250µL, biocompatible version)⁴	1	6821.0031	X³				
Bridges							
1µL Bridge (PEEKsil)	1	6824.0015			X1		
1µL Bridge (PEEKsil)	1	6825.0015		•		X1	
6.2µL Bridge (PEEK)	1	6824.0016		•••••••	Х	•	
6.2µL Bridge (PEEK)	1	6825.0016		•		Х	

Find recommended combinations for syringes, buffer tubings and sample loops on page 4-218.

1. Can be used for Nano/Cap/Mic applications only if Nano/Cap modification kit is previously installed

2. For analytical applications only, please use the smaller sample loops for Nano/Cap 3. Can be mounted only when PAEK Upgrade Kit is previously installed

4. For analytical applications only, please use the smaller syringes for Nano/Cap

Recommended Syringes, Buffer Tubings and Sample Loops Combinations for the Use with UltiMate 3000 WPS-3000(T)PL RS Nano/Cap, WPS-3000(T)BPL Analytical, WPS-3000TFC and WPS-3000TBFC Autosamplers

Recommended Combin	ations	
Syringe	Buffer Tubing	Sample Loop
WPS-3000(T)PL RS Na	no/Cap	
25µL	50µL	1µL, 5µL
100µL	500µL	10µL, 20µL
250µL	500µL	50µL, 125µL
WPS-3000TBPL Analy	tical	
100µL	500µL	5µL, 10µL, 20µL, 50µL
250µL	1000µL	125µL, 250µL
WPS-3000TFC and WF	S-3000TBFC Analytical (with Nano/Ca	p Modification Kit)
25µL	50µL	1µL, 5µL
100µL	500µL	5μL, 10μL, 20μL, 50μL
250µL	500µL	50µL, 125µL
250µL	1000µL	250µL

Accessories and Spare Parts for the Use with UltiMate 3000 OAS-3x00 Open Autosamplers

Description	Quantity	Cat. No.
Holding loop (FEP) with needle adapter mounted	1	6845.0034
Holding loop kit (FEP)	1	6845.0035
Holding loop (SST)	1	6845.0029
2µL Sample loop for Cheminert injection valve	1	755.CSL2
20µL Sample loop for Cheminert injection valve	1	755.CSL20
100µL Sample loop for Cheminert injection valve	1	755.CSL100
100µL Syringe	1	6845.0062
Sample tray (VT54) for 2mL vials (54 positions per tray)	6	6845.0055

Accessories and Spare Parts for the Use with ACC-3000(T) Autosampler Column Compartments

Description	Quantity	Cat. No.
Adapter for 5-position holder to be used for 2mL vials	1	6820.4092
Adapter for vial pusher for uncapped 10mL vials	1	6820.2402
Needle	1	6820.2403
Buffer tubing, >250µL, Viper	1	6820.2468
20µL Sample loop, Viper	1	6830.2414
50µL Sample loop, Viper	1	6830.2416
200µL Sample loop, Viper	1	6830.2418
250µL Syringe	1	6822.0003
1000µL Syringe	1	6822.0005
Front cover, transparent	1	6820.1427

UltiMate 3000 Thermostatted Column Compartments

Accessories for the Use with UltiMate 3000 TCC-3000(RS) Thermostatted Column Compartments

Description	Quantity	Cat. No.
1µL Pre-column heater, Viper (SST)	1	6722.0510
2µL Pre-column heater, Viper (SST)	1	6722.0530
7μL Pre-column heater, Viper (SST)	1	6722.0540
11µL Pre-column heater, Viper (SST)	1	6722.0550
Post-column cooler insert, Viper (SST)	1	6730.0008
Column clip for columns with an outer diameter < 8mm	6	6722.0290
Column clip for columns with an outer diameter of 8-12mm	6	6722.0280

Optional Column Switching Valves for the Use with UltiMate 3000 TCC-3000RS/SD Thermostatted Column Compartments

		Biocompatible		Non biocompatible			
		Tita	וHP™	TitanHT™	TitanHP™	Titar	וHT™
Description	Quantity	< 34 MPa (5000 psi)	< 41 MPa (6000 psi)	< 103 MPa (15000 psi)	< 41 MPa (6000 psi)	< 103 MPa (15000 psi)	<125 MPa (18130 psi)
Valve Drives							
Valve Drive (Actuator) for right side installation	1	6730	.0003	6730.0001	6730.0003	6730	.0001
Valve Drive (Actuator) for left side installation	1	6730	.0004	6730.0002	6730.0004	6730	.0002
Pods							
Pod, 2-position, 6-port	1	6723.9013 (PEEK)	_	6730.0031 (Ti)	6722.9013 (SST)	6730.0006 (SST)	-
Pod, 2-position, 10-port	1	6723.9023 (PEEK)	-	6730.0032 (Ti)	6722.9023 (SST)	6730.0026 (SST)	-
Pod, 6-position, 7-port	1	-	6722.9035 (Ti)	6730.0030 (Ti)	-	6730.0016 (SST)	6730.0050 (SST)

UltiMate 3000 Detectors

Flow Cells for UltiMate 3000 DAD-3000(RS), MWD-3000(RS), VWD-3x00(RS) and FLD-3x00(RS) Detectors

Description	Quantity	Cat. No.	DAD-3000(RS) MWD-3000(RS)	VWD-3x00(RS)	FLD-3x00(RS)
Analytical flow cell (13µL, SST, 12 MPa)	1	6082.0100	Х		
Semi-analytical flow cell (5µL, SST, 12 MPa)	1	6082.0200	Х		
Semi-micro flow cell (2.5µL, SST, 12 MPa)	1	6082.0300	Х		
Analytical flow cell (13µL, PEEK, 5 MPa)	1	6082.0400	Х		
Semi-micro flow cell (2.5µL, PEEK, 5 MPa)	1	6082.0500	Х		
Semipreparative flow cell (0.7µL, PEEK, 10 MPa)	1	6082.0600	Х		
Flow cell, analytical (11µL, SST, 12 MPa)	1	6074.0250		Х	
Flow cell, semi-micro (2.5µL, SST, 12 MPa)	1	6074.0360		Х	
Flow cell, analytical (11µL, PEEK, 5 MPa)	1	6074.0200		Х	
Flow cell, semi-micro (2.5µL, PEEK, 5 MPa)	1	6074.0300		Х	
Flow cell, semi-preparative (0.7µL, PEEK, 10 MPa)	1	6074.0320		Х	
Flow cell, Mic (180nL, fused silica, 20 MPa)	1	6074.0290		Х	
Flow cell, capillary (45nL, fused silica, 20 MPa)	1	6074.0280		Х	
Flow cell, nano (3nL, fused silica, 20 MPa)	1	6074.0270		Х	
UV monitor, ultra-low dispersion (45nL, fused silica, 30 MPa)	1	6074.0285		Х	
Flow cell, dummy	1	6074.0190		Х	
Flow cell, analytical (8µL, SST, 2 MPa)	1	6078.4230			Х
Flow cell, micro (2µL, SST, 4 MPa)	1	6078.4330			Х

Accessories and Spare Parts for UltiMate 3000 Optical Detectors

Description	Quantity	Cat. No.	DAD-3000(RS) MWD-3000(RS)	VWD-3x00(RS)	FLD-3x00(RS)
Deuterium lamp	1	6074.1110	Х	Х	
Tungsten lamp	1	6074.2000	Х	Х	
DAC board	1	6082.0305	Х	Х	Х
DAC cable (analog out)	1	6074.0002	Х	Х	

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Accessories and Spare Parts for the Use with the UltiMate 3000 PCM-3000 pH and Conductivity Monitor

Description	Quantity	Cat. No.
pH flow cell, 28µL (PEEK)	1	6082.2030
pH electrode for PCM-3000	1	6082.2020
Dummy electrode for PCM-3000	1	6082.2042
Conductivity flow cell, 21µL (Ti)	1	6082.2060

Accessories and Spare Parts for the Use with the UltiMate 3000 ECD-3000RS Detectors

Description	Quantity	Cat. No.
In-Line Filter Kit with Graphite Filter Elements	1	70-0893
In-Line Filter Kit with PEEK Filter Elements	1	70-4093
Filter Element (Graphite)	5	70-0898
Filter Element (PEEK)	5	70-3824
Amperometric Cell 6041RS ultra (25nL or 50nL, glassy carbon or boron-doped diamond, 1.4 MPa)	1	6070.3000
Gasket for Amperometric Cell 6041RS (25nL, boPET)	5	6070.2528
Gasket for Amperometric Cell 6041RS (50nL, boPET)	5	6070.2529
Working Electrode for Amperometric Cell 6041RS (boron-doped diamond, BDD)	1	6070.3100
Working Electrode for Amperometric Cell 6041RS (glassy carbon, GC)	1	6070.3200
Coulometric Cell 6011RS ultra (7.06µL, micro-porous graphite carbon, 4 MPa)	1	6070.2400
Potentiostat Module, dual channel DC	1	6070.1400
Cell Simulator – SimulatorRS	1	6070.4100
Cell Simulator – QualifierRS	1	6070.4200

Accessories and Spare Parts for the Use with Charged Aerosol Detectors

Description	Quantity	Cat. No.	Corona CAD	Corona ultra RS
Gas Filter Assembly (HEPA/Carbon)	1	70-6224	Х	Х
Corona Waste Bottle Cap Assembly	1	70-7754	Х	Х
Bottle, 5.0 L Waste (Compatible with 70-7754 only)	1	70-7751	Х	Х
Filter-HPLC Inline	1	70-4538	Х	Х
Drain/Vent Tubing Assembly	1	70-7115	Х	Х
Gas Inlet Tubing (¼")	1	70-6260	Х	Х
Gas Exhaust Hose Assembly	1	70-6261	Х	Х
Maintenance Kit for Nitrogen Generator	1	70-6230	Х	Х
Corona ultra RS Waste Level Detector Assembly	1	70-9363R		Х

UltiMate 3000 Automated Fraction Collector

Sample Racks and Accessories for the Use with the UltiMate 3000 AFC-3000

Description	Quantity	Cat. No.
Sample Racks		
Sample Rack (10 position) for 10mL vials, 22mm × 45mm	1	6820.4086
Sample Rack (22 position) for 4mL vials, 15mm × 45mm	1	6820.4084
Sample Rack (40 position) vfr 2mL vials, 12mm × 32mm	1	6820.4070
Sample Rack (21 position) for 50mL tubes, 30mm × 100mm	1	6702.0021
Sample Rack (24 position) for 30mL tubes, 24mm × 100mm	1	6702.0024
Sample Rack (40 position) for 20mL tubes, 20mm × 100mm	1	6702.0040
Sample Rack (60 position) for 14mL tubes, 16mm × 100mm	1	6702.0060
Sample Rack (90 position) for 8mL tubes, 13mm × 100mm	1	6702.0090
Sample Rack (36 position) for Foxy vials, scintillation vials, 28mm OD	1	5701.2025
Sample Rack (60 position) for Foxy vials, 1.5mL	1	5701.2023
Sample Rack (72 position) for Foxy mini tubes, 18mm OD	1	5701.2024
Positioning pins for Foxy racks	2	6702.9006
Funnel rack	1	6702.1021
Adapter for 4 WPS racks	1	6702.0100
Adapter for 4 well plates	1	6702.0200
Adapter for 2 well plates (Foxy Jr./R1)	1	5701.2021
Accessories		
Diverter valve, 0.4mm ID drop former, and tubing ("Kit for low flow rates")	1	6702.0300
Drop former, 1mm ID SST, including grounding cable ("Kit for normal-phase LC")	1	6702.0400

Find the Vials and Closures portfolio on page **2-001**.

4-222

UltiMate 3000 RSLC Nano System

The UltiMate 3000 RSLCnano System was developed with throughput in mind. The robust, continuous direct-flow delivery is designed for interruption-free analysis. The wide flowpressure footprint enables the application of UHPLC to the nano scale, allowing analysts to tune for the highest resolution or the fastest analysis time, even for tryptic peptide samples of utmost complexity. Configurable for speed, separation power, or sensitivity, the UltiMate 3000 RSLCnano is the only system to deliver all.

Consumables and Spare Parts for UltiMate 3000 RSLC Nano Systems

Description	Quantity	Cat. No.
Maintenance kit for NCS-3500RS loading pump	1	6042.1951
Check valve cartridge, ceramics (for both the inlet and outlet valve) for the NC pump and loading pump	1	6041.2301
Column switching valve; 2-position, 6-port valve	1	6041.0004
Column switching valve; 2-position, 10-port valve	1	6041.0001
Flow meter, biocompatible with flow selector for nano LC (50 – 1000nL/min)	1	6041.7901A
Flow meter, biocompatible with flow selector for capillary LC (0.5 – 10µL/min)	1	6041.7902A
Flow meter, biocompatible with flow selector for micro LC (5 $-$ 50 μ L/min)	1	6041.7903A
Flow selector for nano LC (50 — 1000nL/min)	1	6041.0002
Flow selector for capillary LC (0.5 – 10μL/min)	1	6041.0003
Flow selector for micro LC (5 – 50µL/min)	1	6041.0014
Mixer kit (8μL) for capillary LC	1	6041.7130
Piston (sapphire)	2	6040.0042
Piston seal (in plate of seal wash system), NP, for NC pump and loading pump	1	6040.0306
Piston seal (main piston seal), RP, for NC pump and loading pump	2	6266.0305
Support ring for main piston seal for NC pump and loading pump	2	6040.0012
Pump head, entire assembly, for NC pump	1	6041.1901A
Pump head, entire assembly, for loading pump	1	6041.1902
Rear seal wash system, seals	1	6040.2208
Column installation/capillary clips kit (6 column clips, 2 clips to attach capillaries routed from top to bottom through the column chamber)	1	6041.0011
Tubing from proportioning valve to pump head, loading pump (with fittings)	2	6040.3023

EASY-nLC 1000 Liquid Chromatograph

Thermo Scientific[™] EASY-nLC 1000 Liquid Chromatograph provides effortless split-free, nano-flow UHPLC performance up to 1000 bar with minimal investment. Dual in-line flow sensors before mixing gives uncompromising gradient precision.

Identify more peptides and increase productivity with higher pressure without compromising reliability and robustness.

Common replacement parts for EASY-nLC 1000 Systems

Description	Cat. No.
Pump Piston Seal Replacement Kit (contains four spring-energized piston seals and a piston seal tool)	LC510
Valve rotor seal (contains one rotor seal)	LC228
Autosampler needle, ASC model	LC302
Column Out solvent line	LC560
Waste In solvent line	LC562
Flow sensor filters (contains four flow sensor filters)	LC542

Accessories, Consumables and Spare Parts for Thermo Scientific Accela High Speed LC

Accela Accessory Kits

Description	Quantity	Cat. No.
Accela Pump accessory kit	1	60157-62001
LC/MS system solvent interconnect kit	1	F5050-010
Kit, maintenance, Accela Pump	1	60157-62002
Kit, Seal, Accela Pump	1	60157-62003
Accela Autosampler Accessory Kit	1	60357-62001
Accela PDA Detector accessory kit	1	60257-62001

Accela Autosampler Consumables

Description	Quantity	Cat. No.
Assembly, needle, inert	1	60357-60017
Assembly, needle tubing	1	60053-60102
Assembly, wash bottle kit	1	60053-60041
Assembly, syringe valve	1	A3692-010
Assembly, transfer tube, 0.012in ID	1	60053-60014
Cooling Adapter, 96 well	1	60053-20002
Filter, flush solvent	1	A4258-010
Grease, Silicon/Teflon (for lead screw)	1	00301-01910
Kit, maintenance Accela Autosampler	1	60357-62002
Kit, needle tubing	1	60053-62043
Kit, wash bottle	1	60053-62009
Ferrule Front, Swagelok	1	00101-08-00001
Ferrule Back, Swagelok	1	00101-08-00002
Lubricant, Triflow	1	1611-0030
Nut, compression, long, 10-32, 1/16in OD tube	1	00101-07-00001
Port, needle	1	60053-20031
Syringe, concentric, 100µL	1	F1100-010
Syringe, concentric, 250µL	1	F1100-020
Syringe, concentric, 500µL	1	F1100-030
Plunger, replacement, concentric, 100µL	1	F1123-010
Plunger, replacement, concentric, 250µL	1	F1123-020
Plunger, replacement, concentric, 500µL	1	F1123-030
Reservoir vials, 16mL	1	00301-07527
Retainer, needle port (injection port)	1	60053-10035
Syringe, standard, 2500µL (with needle tubing ext)	1	60053-62002
Syringe, 2.5mL	1	60053-60006
Sample Loop, 5µL	1	00109-99-00007
Sample Loop, 10µL	1	00109-99-00008
Sample Loop, 20µL	1	00109-99-00009
Sample Loop, 25µL	1	00109-99-00010
Sample Loop, 50µL	1	00109-99-00011
Sample Loop, 100µL	1	00109-99-00012
Sample Loop, 500µL	1	00109-99-00013
Sample Loop, 1000µL	1	00109-99-00014
Stripper	1	F1034-010
Valve, injector	1	00110-03-00013
Seal, Rotor	1	00109-99-00021
Rotor, Valco injection valve	1	00110-03-00019
Tubing assembly, 2.5mL syringe	1	60053-60005

Accela Open Autosampler Consumables

Kit Description	Cat. No.
Kit, asp tube, Accela Open A/S, RoHS PAL DilAspKit	00950-01-00311
Loop, hldg, dlw, Accela Open A/S, RoHS PAL DLWLoop	00950-01-00317
Screw, syringe, Accela Open A/S, RoHS PAL DLW Screw	00950-01-00322
Tool, needle, Accela Open A/S, RoHS PAL DLW NdTool	00950-01-00323
Holder, needle, dlw, Accela Open A/S, RoHS PAL DLWNHA	00950-01-00324
Syringe, dlw, Accela Open A/S, RoHS SyrC DLW 100-R	00950-01-00325
Plunger, syringe, dlw, Accela Open A/S, RoHS PLG DLW 100	00950-01-00326
Holder, needle, dlw, Accela Open A/S, RoHS PAL DLWPIg	00950-01-00327
Needle kit, dlw, 3PK, Accela Open A/S, RoHS PAL DLWNdl	00950-01-00328
Kit, dlw replament, Accela Open A/S, RoHS PAL DLW Option	00950-01-00330
Kit, insert, dlw, Accela Open A/S, RoHS PAL DLW Insert	00950-01-00334
Tube, waste, dlw, Accela Open A/S, RoHS PAL TubeWaste	00950-01-00335
Valve, inject, 18K, Accela Open A/S, RoH N/A	00950-01-00336
Rotor, Inj Valve, VALCO 18KPSI, RoHS C72-16R6	00110-03-00019
Stator Inj Valve, VALCO 18KPSI, RoHS C72V-6C96	00950-01-00337

Accela PDA Accessories

Description	Quantity	Cat. No.
Filter Wheel for linearity calibration, (5 position; 1 cuvette with perchloric acid blank and 4 cuvettes with different concentrations of potassium dichromate in perchloric acid solution, NIST traceable)	1	803264
10mm flowcell assembly, with inlet/outlet tubing and fittings (1cm LightPipe)	1	803265-01
Flowcell Assembly, with inlet/outlet tubing and fittings (5cm Lightpipe)	1	803237-01
Backpressure regulator	1	802259
FingerTight PEEK Ferrule Nuts	1	2522-0285
Inlet tubing, with insulation, PEEK 1/16 x 0.005in ID (red)	1	803260
Outlet tubing, PEEK 1/16 x 0.01in ID (blue)	1	703950

Accela Pump Liquid Displacement Assembly Parts

Description	Material	Quantity	Cat.No.
Seal, film, PEEK, Accela pump	PEEK	4	00950-01-00122
Seal, high pressure, GFP, Accela pump	PTFE/GFP/Ti	2	00950-01-00129
Valve, check, outlet, Accela pump	Ti/ruby/sapphire	1	00950-01-00131
Valve, check, inlet, Accela pump	Ti/ruby/sapphire	1	00950-01-00130
Cartridge, blind, inlet, Accela pump	PEEK	1	00950-01-00120
Piston, sapphire	Sapphire	2	00950-01-00126
Secondary piston seal (wash seal)	PE/SS	2	00950-01-00128

Accela 1250 Pump Liquid Displacement Assembly

Description	Quantity	Cat. No.
UHP PEEK sealing ring	5	00950-01-00284
Check valve, Titanium and ruby	2	00110-05110
Piston unit, sapphire	2	00950-01-00126
Secondary piston seal (GFP)	2	00950-01-00129
Primary piston seal (GFP)	2	00950-01-00129

Accela 600 Pump Spare Parts

Description	Quantity	Cat. No.
O-ring, 2.69mm x 1.14mm, perfluor	1	00950-01-00286
Kit, inlet tubing, Accela 600 pump	1	60157-62008
Mixer, static, 65µL, Accela 600 pump, RoHS	1	00950-01-00292
Seal, H/P	2	00107-18110
Piston, 1/8", TZP	2	00201-11324
Valve, check	2	00110-05110
Seal, face, PEEK, check valve	5	00950-01-10013
Seal, piston, secondary	2	00107-18114

Accessories, Consumables and Spare Parts for Thermo Scientific LC-MS Systems

Ion Traps and Orbitrap Series

Thermo Scientific[™] Orbitrap[™] LC-MS systems are the recognized standards for high-resolution, accurate-mass measurements.

Orbitrap LC-MS technology routinely delivers the superior mass resolution and mass accuracy necessary to reduce analysis times and increase confidence in results. This makes it the platform of choice for the most confident protein and metabolite identification, characterization and quantitation. Combined with superior dynamic range and unsurpassed sensitivity, Orbitrap systems are the only mass spectrometers capable of providing all four benefits at the same time, without compromise.

With market and technology leadership for over 25 years, we offer ion trap LC-MS systems for every application and budget. Ion trap LC-MS systems offer unique capabilities such as MSⁿ and datadependent analysis along with excellent full-scan sensitivity to provide routine detection and rapid identification of low-level analytes. Ion trap systems support a variety of applications from compound identification and routine HPLC detection through the most demanding analyses of low-level components in complex biological matrices.

TSQ Series Triple Quadrupole LC-MS

Robust triple-stage quadrupole LC-MS systems enable ultra-sensitive quantitation of target compounds in complex matrices.

TSQ Series triple-stage quadrupole LC-MS systems offer a wide range of capabilities. From the value-conscious Thermo Scientific[™] TSQ Endura[™] LC-MS to the precise Thermo Scientific[™] TSQ Quantiva[™] LC-MS, our mass spectrometers couple perfectly with our HPLC, UHPLC, and nano-LCs to easily accommodate complex matrices encountered in a variety of applications.

MSQ Plus Single Quadrupole LC-MS

Our single quadrupole LC-MS system offers superior ease-of-use and modest price and space requirements.

The system can be used with both HPLC and IC systems in a wide range of applications and methodologies.

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Ion Traps and Orbitrap Series

API Source Components

Description	Cat. No.
USI ESI probe	OPTON-20011
USI APCI probe	OPTON-20012
Capillary heater cage assembly, for LTQ & LTQ XL	97055-60040
Capillary heater cage assembly, for the LXQ & LCQ Fleet	97055-60181

Accessory Kits

Description	Cat. No.
TSQ Quantum forepump kit (used with LTQ series)	70111-62014
Hose and accessories kit, LTQ & LTQ XL	97055-62007
Hose, single mechanical pump accessory, LXQ & LCQ Fleet	97055-60135
LTQ series ship kit	70111-62033
Accessory Kit, LTQ/LTQ XL	97055-62044
Accessory Kit, LXQ & LCQ Fleet	97055-62045

Chemicals

Description	Cat. No.
LCQ chemicals kit, for LTQ & LCQ series	97000-62042
Met-Arg-Phe-Ala, 20mg	00301-07709
Ultramark 1621	00301-12200
Caffeine, 1mg/mL	00301-12310
Reserpine, 1g	00301-12901

Pressure Gauges

Description	Cat. No.
lon gauge	00105-01525
lon gauge o-ring, 0.737id 3/32 THK Viton	00107-10056

Metal Needle Kits

Description	Cat. No.
32-Gauge metal needle kit for high flow LC flow rates between 5µL/min to 400µL/min Uses 32-gauge needle, (P/N 00950-00954)	OPTON-53003
34-Gauge metal needle kit for low flow LC flow rates between 500nL/min to 10µL/min Uses 34-gauge needle, (P/N 97144-20040)	OPTON-30004

Fittings, Ferrules, Sample Loops and Tubing

Trangs, Fortaros, oumpre Ecops and Tabin	3
Description	Cat. No.
Fitting, HPLC, adaptor 10-32 x 1/4 PEEK	00101-18080
Fitting, nut, fingertight, HPLC, 10-32, PEEK	00101-18081
Fitting, fingertight, 2, Upchurch	00101-18195
Fitting, flangeless, 1/8in, Delrin, green	00101-18198
Fitting, flangeless, 1/8in, Delrin, blue	00101-18200
Fitting, plug, 1/4-28, Tefzel	00101-18075
Nut, LC, 1/16in, ss, Rheodyne	2522-0066
Ferrule, LC, 1/16in, ss, Rheodyne	2522-3830
Ferrule, 0.008in ID, Kel-F HPLC	00101-18114
Ferrule, 0.012in ID, Kel-F HPLC	00101-18116
Ferrule, 0.016in ID, PEEK, HPLC	00101-18120
Ferrule, Fingertight 2, Upchurch	00101-18196
Ferrule, 1/8in, Tefzel	00101-18199
Fitting, grounding union, 1/16, ss	00101-18182
Fitting, LC union, 0.010in orifice, PEEK	00101-18202
Fitting, LC TEE union, 0.020in orifice, PEEK	00101-18204
5µL sample loop, ss	00110-22026
10µL sample loop, ss	00110-22012
20µL sample loop, ss	00110-22028
50µL sample loop, ss	207180
100µL sample loop, ss	00110-22018
500µL sample loop, ss	00110-22020
1mL sample loop, ss	00110-22022
Tubing, 0.15mm ID x 0.39mm OD fused-silica capillary for APCI sample tube	00106-10498
Tubing, 0.10mm ID x 0.19mm OD fused-silica capillary for ESI sample tube	00106-10499
Tubing, 0.05mm ID x 0.19mm OD fused-silica capillary for ESI sample tube for low flow up to 200µL/min	00106-10502
Tubing, 0.1mm ID x 0.363mm OD fused-silica capillary for infusion line	00106-10504
Tubing, 0.075mm ID x 0.3193mm OD fused-silica capillary for low flow applications instead of metal needle	00106-10511
Teflon tube, .03in ID x 1/16in OD for syringe adapter assembly	00301-22915
Tubing, 1in ID x 3/16in, Tygon	00301-22922
Hose, 1.5in ID, PVC reinforced	00301-24163

TSQ Series Triple Quadrupole LC-MS

Chemicals

Description	Quantity	Cat. No.
Cesium iodide	1 x 1g vial	HAZMAT-01-00004
TSQ Quantum AM calibration kit	1	70111-62029S
Reserpine	1 x 1g vial	00301-12901
Polytyrosine-1,3,6 calibration solution (liquid)	1 x 20mL	00301-22924
Polytyrosine-1,3,6 calibration standard (solid)	1	00301-22925
FC43 calibration liquid	1 vial	50010-30059
Syringe Adapter Kit for infusion of calibrant	1	70005-62011

Ion Transfer Tubes, Seals and O-rings

Description	Quantity	Cat. No.
TSQ Quantiva	1	80100-20641
TSQ Endura	1	70005-20606
TSQ Quantum Access	1	70111-20972
TSQ Quantum Ultra, Ultra AM & Ultra EMR	1	97055-20199
TSQ Quantum Discovery Max	1	70111-20396
TSQ Quantum, Quantum AM & Quantum Discovery	1	70111-20100
TSQ Vantage, Vantage AM & Vantage EMR	1	70005-20423
Seal for ion transfer tube (TSQ Quantiva)	1	70005-20922
Graphite vespel o-ring (not TSQ Quantiva)	1	97055-20442

Metal Needle Kits

Description	Quantity	Cat. No.
Metal Needle Insert Standard Flow (TSQ Quantiva and TSQ Endura)	1	80000-60317
Metal Needle Insert Low Flow (TSQ Quantiva and TSQ Endura)	1	80000-60152
32-Gauge Metal Needle Insert LC Flow rates between 5μL/min to 2000μL/min Contains Metal Needle PN 70005-20434	1	OPTON-53010
34-Gauge Metal Needle Insert LC Flow rates between 1μL/min to 10μL/min Contains Metal Needle PN 70005-20483	1	OPTON-53011
High flow metal needle kit	1	OPTON-20004
Low flow metal needle kit	1	OPTON-20005
High flow metal needle kit	1	OPTON-20016
Low flow metal needle kit	1	OPTON-20017
High flow metal needle kit	1	OPTON-53003
Low flow metal needle kit	1	OPTON-30004
H-ESI metal needle kit	1	OPTON-20034

MS Maintenance Kit

Description	Quantity	Cat. No.
MS maintenance kit	1	70111-62032
Ferrule, 0.008 ID, Kel-F (for fused silica sample tube)	2	00101-18114
Tubing, fused-silica, 0.10 ID x 0.19 OD (fused silica sample tube)	6ft	00106-10499
O-ring, Viton, 0.125 ID x 1/16 (for source mount assembly gas connections)	2	00107-02550
Fitting, HPLC, 10-32, short one-piece, 10/pk, RoHS	3	00109-99-00016
Oil, vacuum pump, 1 liter	3	00301-15101
Syringe, 500µL, Gastight	1	00301-19016
Tubing, PEEK, 0.005in ID x 1/16in OD, red	3ft	00301-22912
Tube, Teflon, 0.03in ID x 1/16in OD (for syringe adapter)	0.1ft	00301-22915
Polytyrosine-1,3,6 calibration standard (liquid)	1	00301-22924
Screw, 6-32 x 3/8 (used to secure front panels to chassis)	2	00405-63266
Screw, 6-32 x 5/16 (used to secure side panels and EMI shield to chassis)	2	00407-63205
Screw, 4 x 6mm (used to secure PS2 and PS3 to chassis)	2	00407-90000
Screw, 8-32 x 3/8 (used to secure top cover to chassis)	2	00415-83206
O-ring, graphite Vespel (for ion transfer tube)	1	97055-20442

ESI Needles and Needle Seal

Description	Quantity	Cat. No.
ESI needle	1	00950-00990
ESI needle seal	1	00950-00952
H-ESI needle	1	97055-20273
H-ESI needle seal	1	97055-20271

Viper Fittings (for grounded union to sprayer/probe)

Description	Cat. No.
Viper Capillary, 65 µm x 150 mm PEEK	6041.5615
Viper Capillary, 130 µm x 150 mm PEEK	6041.5616
Viper Kit, 65 µm x 150mm PEEK (5 capillaries)	6041.5601
Viper Kit, 130 µm x 150mm PEEK (5 capillaries)	6041.5602

Pump Oil

Description	Cat. No.
Pump oil for Sogevac sv65 mechanical pump	HAZMAT-01-00063

MSQ Plus Single Quadrupole LC-MS

MSQ Plus Kits

Description	Quantity	Cat. No.
Annual Maintenance Kit*	1	60111-62014
Probe Heater Repair Kit – insulating teflon parts	1	60111-62010
Surveyor MSQ Test Kit	1	FM104284

*The Consumables Kit contains the non-liquid parts required for the upkeep of your MSQ Plus MS Detector including source O-rings, entrance cones, esi/apci capillaries, cone wash assembly, esi probe repair supplies, turbo oil wick

Consumables and General Spares

Description	Quantity	Cat. No.
Probe repair supplies: APCI probe capillary	1	FM102594
ESI probe capillary	1	FM102598
PEEK tube insert For API probe	1 pk (12)	FM102591
Graphite 1/16in Vespel ferrule	1 pk (10)	6070119
ESI ceramic sleeve	1	FM103394
Calibration solution MSQ version 1.4 and higher	1	60111-01001
Calibration solution MSQ classic version 1.0	1	FM104285
Titanium entrance cone complete with O-ring	1	60111-60049
Cone wash nozzle assembly	1	FM102521
Cone wash nozzle O-ring	1pk (10)	FM101464
Entrance cone spare O-ring	1pk (10)	5711000
Exit (Extraction) cone	1	FM102263
Swage connector for 6mm nitrogen tubing	1	00101-02-00006
6mm x 1/4in NPT nitrogen fitting	1	00103-02-00001
6mm Teflon tubing for nitrogen supply	Per foot	00109-99-00004
Pfeiffer turbo replacement oil wick	1	00950-01116
Edwards vacuum pump oil	1 liter	00301-15102
ESI probe complete	1	FM102595
APCI probe complete	1	FM102587
Probe heater assembly	1	60111-60023
Vacuum exhaust hose, blue, 1in ID	Per foot	00301-08301
Hexapole screws – 3 required	1	60111-20055
USB cable 2m	1	00302-99-00008
APCI corona pin needle	1	70005-98033

Software

.

_

Description	Cat. No.
Upgrade to MSQ 2.0 with Xcalibur 2.0 includes LC Devices 2.02	OPTON-20432
Validation MSQ Plus on Xcalibur 2.0 – MS only	OPTON-09015

LC Technical Information

Method Transfer to Accucore 2.6 µm Columns

Containing solid core particles, which are engineered to a diameter of 2.6µm and a very narrow particle size distribution; Accucore HPLC columns allows high speed, high resolution separation, with back pressures significantly lower than those associated with sub-2µm fully porous particles.

When transferring methods from conventional HPLC to a solid core column several approaches can be taken, depending on the analytical needs. If column dimensions are maintained and the particle characteristics, design and diameter, are changed then an improvement in efficiency and, therefore, sensitivity, resolution and peak capacity is obtained. A second approach is to change not only particle characteristics but also column dimensions, which has the benefit of further reducing analysis time and increasing sensitivity.

An understanding of some practical calculations can help to achieve the correct scaling and maintain a consistent assay profile between the original and transferred method. An identical approach can be used when transferring a conventional HPLC analysis to a UHPLC method using columns packed with sub-2µm fully porous particles such as Hypersil GOLD 1.9µm and Syncronis 1.7µm.

There are three main considerations when transferring a method to a shorter column using different particles: Scaling the flow rate, adjusting the injection volume and adjusting the gradient profile. These are discussed in more detail below.*

1. Scale the Flow Rate

To maintain an equivalent separation when transferring a method it is important to keep the linear velocity constant between the original and new method. The linear velocity is related to the flow rate, internal diameter of the column and particle size. A simple equation can be derived to calculate the flow rate (F_2) required for the new method. This is shown below, normalized for particle size.

$\mathbf{F}_{2} = \mathbf{F}_{1} \mathbf{x} \left(\mathbf{d}_{c2}^{2} / \mathbf{d}_{c1}^{2} \right) \mathbf{x} \left(\mathbf{d}_{p1} / \mathbf{d}_{p2} \right)$

- F₁ original flow rate (mL/min)
- d₁ original column internal diameter (mm)
- d_{11}^{-1} original column particle size (µm)
- d_{c2}^{p} new column internal diameter (mm)
- d_{n2}^{2} new column particle size (µm)

2. Adjust the Injection Volume

Because sub-3 μ m solid core based methods are most often transferred to smaller volume columns, the same injection volume will take up a larger proportion of the new column, possibly leading to band broadening or potentially overloading the column. It is therefore important to scale down the injection volume to match the change in column volume. Once again, a simple equation can be used to calculate the injection volume (V_{i2}) required for the new method.

$V_{i2} = V_{i1} \times (d_{c2}^{2} \times L_{2} / d_{c1}^{2} \times L_{1})$

- V_{i1} original injection volume (µL)
- $d_{c1}^{"}$ original column internal diameter (mm)
- L₁ original column length (mm)
- V_{12} new injection volume (µL)
- d_{c2}^{-} new column internal diameter (mm)
- L_2^2 new column length (mm)

3. Adjust the Gradient Profile

Geometrical transfer of the gradient requires calculation of the number of column volumes of mobile phase in each segment (time interval) of the gradient in the original method to ensure that the new calculated gradient takes place over the same number of column volumes, for the new column.

The following calculation should be performed for each time segment of the gradient, including column re-equilibration. It takes into consideration the void volume of each column (V_c , calculation described below), the flow rate in the original method and the flow rate in the new method (calculated in step 1 above) and the time segment in the original method.

$t_{g2} = t_{g1} \times (V_{c2}/V_{c1}) \times (F_1/F_2)$

- $t_{\alpha 1}$ Time segment in original gradient (min)
- t_{a2}^{*} Time segment in new gradient (min)
- V_{c1}− Original column void volume (mL)
- V_{c2}- New column void volume (mL)
- F_1 Original flow rate (mL/min)
- F₂ New flow rate (mL/min)

The void volume of the column is the volume that is not taken up by the stationary phase (approximately 68% of the column volume):

$V_{c} = 0.68 \times \pi \times r^{2} \times L$

- V_c column volume (mL)
- L column length (cm)
- r column radius (cm)

An example of a method transferred following steps 1 to 3 above is illustrated in the following table:

Column: Fully porous 5 µm, 150	0 x 4.6mm	Column: Accucore RP-MS 2.6 100 x 2.1mm	μm,	Column: Accucore RP-MS 2.6 50 x 2.1mm	μm,
Flow rate (mL/min)	1.00	Flow rate (mL/min)	0.4	Flow rate (mL/min)	0.4
lnj. volume (µL)	1	lnj. volume (µL)	1.4	lnj. volume (µL)	0.7
Gradient Time (min)	%B	Gradient Time (min)	%B	Gradient Time (min)	%B
0.0	35.0	0.0	35.0	0.0	35.0
10.0	60.0	3.5	60.0	1.7	60.0
11.0	35.0	3.8	35.0	1.9	35.0
17.0	35.0	6.0	35.0	3.0	35.0
Backpressure	59	Backpressure	218	Backpressure	120
Resolution	2.6	Resolution	2.5	Resolution	1.5
Run Time (minutes)	17.0	Run Time (minutes)	6.0	Run Time (minutes)	3.0
Solvent Used (mL)	17	Solvent Used (mL)	2.4	Solvent Used (mL)	1.2

Method transfer conditions from HPLC (150 x 4.6mm, 5 μm columns) to

Accucore (100 x 2.1mm, 2.6µm and 50 x 2.1mm, 2.6µm columns).

 $^{*}\mbox{We}$ offer a convenient method transfer calculator at the Chromatography

Resource Center (www.thermoscientific.com/crc)

System Considerations

To obtain the best data using fast chromatography it is critical that the LC instrument system is optimized to operate under these conditions. All system components for the assay should be considered. System volume (connecting tubing ID and length, injection volume, flow cell volume in UV) must be minimized, detector time constant and sampling rate need to be carefully selected, and when running fast gradients pump dwell volume needs to be minimal.

Minimizing System Volume

Excess system volume gives rise to band broadening, which has a detrimental effect on the chromatographic performance. This can arise from the column, the autosampler, the tubing connecting the column to injector and detector and in the detector flow cell. The extra column effects become more significant for scaled down separations because of the smaller column volumes and for less retained peaks which have a lower peak volume making it even more critical to minimize extra column dispersion.

Detector Sampling Rate

With 1.9µm particles, operating parameters can be optimized to give fast analysis. This results in narrow chromatographic peaks which may be of the order of 1-2 seconds or less in width. It is important to scan the detector (whether it is UV or MS) fast enough to achieve optimum peak definition, otherwise resolution, efficiency and analytical accuracy will be compromised.

Dwell Volume

The HPLC pump dwell volume is particularly important when running high speed applications using fast gradients, typical of high throughput separations on small particle packed columns. This is because the pump dwell volume affects the time it takes for the gradient to reach the head of the column. If we consider a method using a flow rate of 0.4mL/min and a fast gradient of 1 minute, the theoretical gradient reaches the column immediately. A pump with a 65µL dwell volume will get the gradient onto the column in 9.75 seconds. A traditional quaternary pump with a dwell volume of 800µL will take 2 minutes to get the gradient to the column. When running rapid gradients this is too slow and it may become necessary to introduce an isocratic hold at the end of the gradient to allow elution of the analytes.

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Scaling Down a Method

Reasons to Scale Down a HPLC or LC/MS Method

There are applications where it is desirable to scale down a method without transferring the method to U-HPLC. These reasons may be to:

- Maximize sensitivity when small amounts of sample are available
- Make flow rate compatible with ionization technique in MS detection
- · Reduce costs by reducing solvent consumption

Transfer Method to a Narrower Column

Reducing the scale of a separation by reducing the column internal diameter may be necessary when transferring a method from UV to MS detection, or when only very small amounts of sample are available, such as in drug discovery or proteomics. In the first case ionization technique or source design determines the best flow rate range (see table above) and in the latter case, method sensitivity is maximized because solutes elute in more concentrated chromatographic bands.

If all other method parameters (column length and particle size, column chemistry, mobile phase composition, gradient range and time, separation temperature) are kept unchanged, the change to a narrower column only requires adjustment of the flow rate.

$F_2 = F_1 \times (d_{c2}/d_{c1})^2$

- F_1 original flow rate (to be reduced)
- F_2 new flow rate
- $\rm d_{_{c1}}-$ original column internal diameter
- d_{c2} new column internal diameter

This is applicable to both isocratic and gradient methods. The new method should produce a chromatogram with identical resolution and identical run time. If small changes in retention times and resolution are observed this is generally caused by system dwell volume (discussed below).

Typical Flow Rates for Analytical, Narrowbore, Capillary and Nanobore Columns (5µm Particles)

Column ID (mm)	Flow Rate Range (µL/min)	Optimum Flow Rate¹ (µL/min)	Recommended Injection Volume ² (µL)	API Source
4.6	1000 - 1500	1250	30	APCI or High flow ESI
3.0	400 - 600	500	10	APCI or High flow ESI
2.1	200 - 300	250	5	APCI or Micro-ESI
1.0	40-60	50	1	Micro-ESI
0.5	10 – 25	12	0.35	Micro-ESI
0.32	4 - 10	5	0.15	Micro-ESI
0.18	1 – 3	2	0.05	Micro-ESI
0.1	0.4 - 1	0.5	0.015	Nanospray
0.075	0.2 - 0.5	0.3	0.01	Nanospray

 Recommended for good efficiency and moderate pressure. Higher flow rates may lead to column voids. Lower flow rates are recommended for washing column bed or changing solvents.

2. Estimates based on negligible loss of efficiency and isocratic elution with sample solvent identical to mobile phase. Larger volumes can be introduced under gradient conditions or using weaker sample solvent.

Transfer Method to a Shorter Column

In gradient elution, the simplest way to reduce the method cycle time is to reduce the column length. If all other method parameters (column ID and particle size, column chemistry, mobile phase composition, gradient range, flow rate, separation temperature) are kept unchanged the only requirement is to change the gradient time using the equation below, where gradient time is reduced by the same factor as the reduction in column volume.

$t_{g1}/V_{c1} = t_{g2}/V_{c2}$

- $t_{n1}^{}$ gradient time in original method (min)
- $t_{\rm g2}^{}-$ gradient time in new method (min)
- V_{c1} original column volume (mL)
- V_{c2} new column volume (mL)

Column volume V_c (mL) can be estimated using:

$V_{c} = 0.68 \times \pi \times r^{2} \times L$

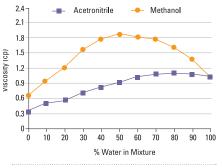
- V_ column volume (mL)
- L column length (cm)
- r column radius (cm)

Dwell Volume

Dwell volume is just as important when scaling down a method as for method transfer to U-HPLC. The effect of dwell volume on the separation is more significant when narrow columns are used at low flow rates. For instance, if the system has a dwell volume of 2.0mL and a 4.6mm ID column is run at 1mL/ min, it takes 2 minutes for the gradient to reach the head of the column; however, if a 2.1mm ID column is used with a 0.4mL/min flow rate it will take 5 minutes for the gradient to reach the column. In high throughput gradient separations using small volume columns, dwell volume causes an increase in run times and longer reequilibration time between runs.

Several approaches can be taken to minimize these effects:

- Select a pump with a small gradient delay volume (e.g., Thermo Scientific Accela high speed LC system has a delay volume of only 65μL);
- Delay sample injection until gradient has reached the head of the column;
- Set the pump at a higher flow rate and split the flow before the column.


Scaling Up a Method

Reasons to Scale Up an HPLC Method

- Increase method capacity
- Isolation and purification of target compounds
- Increase sample throughput

Analytical methods may require scale up to preparative sizes to isolate and purify compounds from mixtures. In choosing the best column and packing material for your preparative application, consider the selectivity and loadability of the media as well as column dimensions, to give the results you need most quickly or economically. We have established a strong reputation for the manufacture and supply of high quality preparative silicas and bonded phases, designed to give the same levels of performance and reproducibility as our popular analytical silica ranges such as the Thermo Scientific Hypersil phases.

Scale up is easiest when starting from an analytical column packed with smaller particle size media offering the same selectivity as the larger particle size preparative media. The leading families of Thermo Scientific phases are offered in various sizes to complement lab scale operations and facilitate the scale up to preparative chromatography. Scout columns, typically 250 x 4.6mm packed with the media of interest can also be used to develop the separation. Once the method is finalized on the smaller column, a scaling factor can be applied.

Scaling Up to a Preparative Column

Flow rate and column load scaling are only required when changing the internal diameter of the column. The scaling of flow rates allows peak retention times to remain relatively constant between columns with different internal diameters. The typical solvent flow rate through a column is dependent on its internal diameter and the particle size of the column packing material. This scaling factor can also be used to estimate the loading capacity of a given column. Assuming column length is a constant, the scale factor can be calculated using the following formula:

Scale Factor = d_{c2}^2/d_{c1}^2

 d_{c1} – original column internal diameter (mm) d_{c2} – new column internal diameter (mm)

The column loading capacity and flow rate required for the new larger ID columns can be calculated using this factor.

Column Backpressure

Column operating backpressure is affected by column length, internal diameter, media particle size, temperature, solvent properties and solvent flow rate. It can also be affected by the use of gradients, where the pressure may vary with solvent composition. Typical operating backpressure for columns or cartridges can be calculated using the following equation:

Pressure (atm) = $\frac{2.1 \text{ x } \Phi \text{ x } \text{ L x } \eta}{d_p^2 \text{ x } d^2}$

- Φ = column impedance
 - (1000 for 4.6mm ID columns)
- L = column length (mm)
- $d_p = particle diameter (\mu m)$
- d = column diameter (mm)
- η = mobile phase viscosity (centipoises)

The mobile phase viscosity varies with composition. As an example, the figure above shows how water viscosity varies with the addition of methanol or acetonitrile. This variability is a critical component in maximizing throughput with respect to the chromatography instrumentation being used.

Discover eVol XR for precise and accurate dispensing

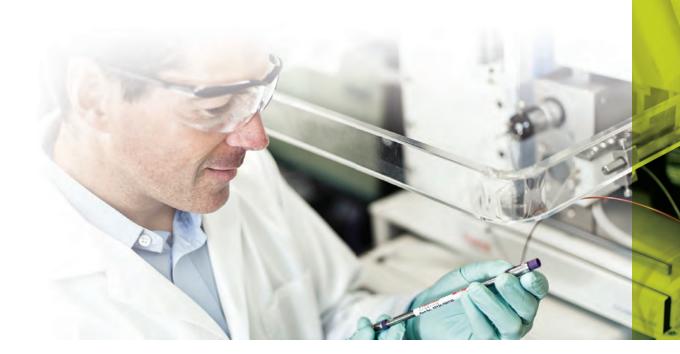
Selecting the Media

Media selection for your preparative separation is important. Choose media that has a narrow particle size distribution which will provide high efficiency columns with a low back pressure, since there are no 'fines' to block frits or impede flow. The uniformly spherical particles, with narrow pore size distribution, apparent in Thermo Scientific preparative columns, provide reproducible performance and a longer column life. Media that is available in a range of particle sizes offers choice for scale up applications with controlled selectivity. We offers a range of choices for preparative media in several particle sizes to tailor the media to your application.

High Load and High Retention – HyperPrep HS

Materials with higher surface area can offer increased loadability. This drive to maximize surface area must be undertaken in a considered manner particularly with regard to particle pore diameter and pore volume. Too high a pore volume will compromise stability and robustness of the bed and too small a pore diameter will influence mass transfer at the expense of efficiency. The high surface area provides enhanced retention of polar compounds. A high carbon loading gives a robust, stable phase. Please contact Technical Support for more information on Thermo Scientific HyperPrep columns and media.

Peak Shape – Hypersil GOLD Media


In analytical HPLC, the use of packings based on highly pure silica has been shown to improve peak shape. Our highly developed and reproducible manufacturing processes ensure that our leading analytical brand of Hypersil GOLD media is also available in a range of particle sizes suitable for preparative LC without compromise on performance.

Polar Compounds and Isomers – Hypercarb Columns, Hypersil GOLD aQ

Often when dealing with very polar compounds, achieving sufficient retention can be a challenge. We are able to offer a variety of choices to overcome this common problem: The polar endcapping on Hypersil GOLD aQ provides a controlled interaction mechanism by which moderately polar compounds can be retained. Hypersil GOLD AX can be used in HILIC mode to provide retention of polar compounds. Hypercarb columns offer truly orthogonal selectivity to C18 in reversed phase LC and can be used to retain highly polar compounds. Hypercarb columns can also be used to differentiate between very closely related compounds including geometric and positional isomers.

Peptides and Proteins – BioBasic and Hypersil GOLD Media

When it comes to the analysis of peptides, the correct selection of packing material becomes ever more important. When deciding on which pore size of packing material to use in the analysis of a polypeptide mix, molecular weight and hydrophobicity of the peptides must be taken into account. Our breadth of silica offerings allow the chromatographer to obtain the best resolution using materials with pore diameters in the 100 to 300Å range. A general rule is that hydrophilic peptides with a molecular weight of less than 2000 daltons can be analyzed using a lower pore volume media, such as Hypersil GOLD media. Above this molecular weight, access to small pores is restricted, and separations tend to be inefficient. For hydrophobic peptides with a molecular weight greater than 2000, a 300Å media such as Thermo Scientific BioBasic is recommended. For the separation of small or hydrophilic peptides, a 100Å material such as HyperPrep HS may give better resolution.

HPLC Troubleshooting

Before you start any troubleshooting, it is essential to observe safe laboratory practices. Know the chemical and physical properties of any solvents used and have the appropriate Material Safety Data Sheets (MSDSs) readily available. All electrically powered instruments should be shut down and unplugged before starting. Eye protection should also be worn.

The following table lists common HPLC problems encountered, the possible causes and solutions for your quick reference.

Symptom	Cause	Action
	elated Problems	
Low	Low viscosity mobile phase.	Confirm expected pressure using the Kozeny-Carmen or similar equation.
Pressure	Piston seals leaking.	Check for evidence of leaking or wear and replace where necessary.
	Leak in system.	Check for and replace any leaking tubing or fittings.
	Air in solvent lines or pump.	Ensure that the reservoirs and solvent lines are fully primed and the purge valve is fully closed.
High	High viscosity mobile phase.	Confirm expected pressure using the Kozeny-Carmen or similar equation.
Pressure	Pump flow-rate malfunction.	Contact manufacturer.
	Tubing blocked.	Working backwards from detector outlet, check source of blockage and replace item as necessary.
	Guard blocked.	Replace guard cartridge.
	Sample precipitation.	Consider sample clarification steps such as filtration or SPE.
	Detector blockage.	Clean the flow cell according to the manufacturer's instructions.
Baseline Ro	elated Problems	
Fluctuating	System not equilibrated.	Equilibrate the column with 10 volumes of mobile phase.
Baseline	Bubbles in flow cell.	Degas the mobile phase and pass degassed solvent through the flow-cell. Do not exceed the cell's pressure lim
	Contaminated guard.	Replace the guard cartridge.
	Contaminated column.	Wash the column using an appropriate solvent. If this does not resolve the problem, replace the column.
	Detector contamination.	Clean the flow cell according to the manufacturer's instructions.
	Contaminated solvents.	Use freshly prepared solvents of HPLC grade.
	Old detector lamp.	Replace the lamp, particularly when this has been in use for > 2000 hours.
Sloping	Contaminated solvents.	Use freshly prepared solvents of HPLC grade.
Baseline	Gradient mobile phase.	Consider purer solvents or higher wavelengths. Otherwise, this is normal.
	System not equilibrated.	Equilibrate the column with 10 volumes of mobile phase.
	Leak in system.	Check for and replace any leaking tubing or fittings.
	Temperature fluctuations.	Use a thermostatically controlled column oven.
	Contaminated column.	Wash the column using an appropriate solvent. Ensure that a gradient method has a wash period at the end.
	Pump not mixing solvents properly.	Where being used, ensure that the proportioning valve is mixing the solvents correctly. If the method i isocratic, blend the solvents manually.
	Blocked solvent reservoir frits.	Ultrasonicate the reservoir frits in water and then methanol.
	Old detector lamp.	Replace the lamp, particularly when this has been in use for > 2000 hours.
Peak Shape	Problems	
Broad	System not equilibrated.	Equilibrate the column with 10 volumes of mobile phase.
Peaks	Injection solvent too strong.	Ensure that the injection solvent is the same or weaker strength than the mobile phase.
	Injection volume too high.	Reduce the injection volume to avoid overload. Typically injection volumes of < 40% of the expected peak width should be used.
	Injected mass too high.	Reduce the sample concentration to avoid mass overload.
	Extra column volume too high.	Reduce diameter and length of connecting tubing. Reduce the volume of the flow cell where possible.
	Temperature fluctuations.	Use a thermostatically controlled column oven. Higher temperatures will produce sharper peaks.
	Old guard cartridge.	Replace the guard cartridge.
	Old column.	Do not use columns that have been used with ion-pair reagents for reverse-phase methods. Old columns give much lower efficiencies than new columns. Replace the column if necessary.
	Contaminated column.	Wash the column using an appropriate solvent. If this does not resolve the problem, replace the column
	Voided column.	Replace the column. Do not use outside the recommended pH range.
Double	Old guard cartridge.	Replace the guard cartridge.
Peaks	Contaminated column.	Wash the column using an appropriate solvent. If this does not resolve the problem, replace the column.
	Voided column.	Replace the column. Do not use outside the recommended pH range.
Negative	Contaminated solvents.	Use freshly prepared solvents of HPLC grade.
Peaks	Wrongly wired detector.	Check the signal polarity from the detector to the recording device.
	Unbalanced RI detector optics.	Refer to manufacturer's instructions.
	lon pair method.	Inject the sample in the mobile phase.

Symptom	Cause	Action
Peak Shape		
Flat topped Peaks	Detector overload.	Reduce the sample concentration.
	Detector set-up.	Check the detector attenuation and re-zero.
Tailing Peaks	Old guard cartridge.	Replace the guard cartridge.
1 6 9 4 9	Injection solvent too strong.	Ensure that the injection solvent is the same or weaker strength than the mobile phase.
	Injection volume too high.	Reduce the injection volume to avoid overload. Typically injection volumes of < 40% of the expected peak width should be used.
	Injected mass too high. Old column.	Reduce the sample concentration to avoid mass overload. Do not use columns that have been used with ion-pair reagents for reversed phase methods. Old columns give much lower efficiencies than new columns. Replace the column if necessary.
	Contaminated column. Voided column.	Wash the column using an appropriate solvent. If this does not resolve the problem, replace the column Replace the column. Do not use outside the recommended pH range.
Fronting Peaks	Old or damaged column.	Replace the column.
	nd Retention Problems	
Small	Degraded sample.	Inject a fresh sample.
Peaks	Low analyte concentration.	Increase the analyte concentration.
	Detector set-up.	Check the detector attenuation and re-zero.
	No wash solvent.	Check that the solvent wash reservoir is filled with a miscible solvent and that the injector is set to wash between injections.
	Damaged or blocked syringe.	Replace the syringe.
	Incorrect amount injected.	Check injector loop size and that no more than 50% of this volume is used for partial loop injections.
	Viscous injection solvent.	Reduce syringe draw-time.
	Old detector lamp.	Replace the lamp, particularly when this has been in use for > 2000 hours.
No Peaks	Sample vial empty.	Fill sample vial.
	Leak in system.	Check for and replace any leaking tubing or fittings.
	Pump not mixing solvents properly.	Where being used, ensure that the proportioning valve is mixing the solvents correctly. If the method is isocratic, blend the solvents manually.
	Damaged or blocked syringe.	Replace the syringe.
	Different dwell volume.	For gradient methods, check that the dwell volume of any new system is not very different from any previous system. Apply a final hold time if necessary.
	Old detector lamp.	Replace the lamp, particularly when this has been in use for > 2000 hours.
Missing	Degraded sample.	Inject a fresh sample.
Peaks	Immiscible mobile phase.	Check that any solvent already in the column is miscible with the mobile phase. Flush with propan-2-ol or ethanol where necessary.
	Fluctuations in pH.	Buffer the mobile phase so that retention of ionizable compounds is controlled.
Extra Peaks	Degraded sample.	Inject a fresh sample.
	Contaminated solvents. Immiscible mobile phase.	Use freshly prepared solvents of HPLC grade. Gradient methods often show 'ghost-peaks'. Check that any solvent already in the column is miscible with the mobile phase. Flush with propan-2-ol
		or ethanol where necessary.
	Fluctuations in pH.	Buffer the mobile phase so that retention of ionizable compounds is controlled.
	Contaminated guard cartridge. Contaminated column.	Replace the guard cartridge. Wash the column using an appropriate solvent. If this does not resolve the problem , replace the
Vening	Quatam nat a guilibrata d	column.
Varying Retention	System not equilibrated.	Equilibrate the column with 10 volumes of mobile phase.
	Leak in system.	Check for and replace any leaking tubing or fittings.
	Temperature fluctuations.	Use a thermostatically controlled column oven.
	Contaminated column.	Wash the column using an appropriate solvent. If this does not resolve the problem, replace the column.
	Blocked solvent reservoir frits.	Ultrasonicate the reservoir frits in water and then methanol.
	Pump not mixing solvents properly.	Where being used, ensure that the proportioning valve is mixing the solvents correctly. If the method is isocratic, blend the solvents manually.
	Contaminated solvents.	Use freshly prepared solvents of HPLC grade.
	Different dwell volume.	For gradient methods, check that the dwell volume of any new system is not very different from any previous system. Apply a final hold time if necessary.
	Piston seals leaking.	Check for evidence of leaking or wear and replace where necessary.
	Air in solvent lines or pump.	Ensure that the reservoirs and solvent lines are fully primed and that the purge valve is fully closed.

For more information, please request Successful HPLC Operation – A Troubleshooting Guide, TG20094.

HPLC Definitions and Equations

Backpressure

The pressure required to pump the mobile phase through the column. It is related to mobile phase viscosity (η), flow rate (F), column length (L) and diameter (d_c), and particle size (d_c) by the following equation:

Pressure Drop (psi) = $\frac{250 \text{ L}\eta \text{ F}}{d_{\text{p}}^2 d_{\text{c}}^2}$

- L = column length (cm)
- η = viscosity
- F = flow rate (mL/min)
- $d_{p} = particle diameter (\mu m)$
- d_c = column internal diameter (cm)

Capacity Factor (k)

Expression that measures the degree of retention of an analyte relative to an unretained peak, where t_R is the retention time for the sample peak and t_0 is the retention time for an unretained peak. A measurement of capacity will help determine whether retention shifts are due to the column (capacity factor is changing with retention time changes) or the system (capacity factor remains constant with retention time changes).

$$\mathbf{k} = \frac{\mathbf{t}_{\mathrm{R}} - \mathbf{t}_{\mathrm{0}}}{\mathbf{t}_{\mathrm{0}}}$$

Efficiency (N)

Also number of theoretical plates. A measure of peak band spreading determined by various methods, some of which are sensitive to peak asymmetry. The most common are shown here, with the ones most sensitive to peak shape shown first:

5-Sigma $N = 25(t_R/W)^2$
 $W = peak width at 4.4%
peak height4-Sigma<math>N = 16(t_R/W)^2$
orOrW = tangential peak width or
13.4% peak heightHalf-Height $N = 5.54(t_R/W)^2$

W = peak width at 50% peak height

Elution Volume (V_R)

Refers to the volume of mobile phase required to elute a solute from the column at maximum concentration (apex).

 $V_{R} = F \cdot t_{R}$

where F is flow rate in volume/time and t_{R} is the retention time for the peak of interest.

HETP

Height equivalent to a theoretical plate. A carryover from distillation theory: a measure of a column's efficiency. For a typical well-packed HPLC column with 5μ m particles, HETP (or *H*) values are usually between 0.01 and 0.03mm.

HETP = L/N

where L is column length in millimeters and *N* is the number of theoretical plates.

Linear Velocity

The flow rate normalized by the column cross section. This effects column performance and is directly related to column pressure. Linear velocity is given by the following equation where L is column length and t_0 is the breakthrough time of an unretained peak:

Resolution (R_s)

The ability of a column to separate chromatographic peaks. Resolution can be improved by increasing column length, decreasing particle size, changing temperature, changing the eluent or stationary phase.

$$\boldsymbol{R}_{s} = \frac{1}{4} \sqrt{N} \left(\frac{k}{1+k} \right) \left(\frac{\alpha - 1}{\alpha} \right)$$

It can also be expressed in terms of the separation of the apex of two peaks divided by the tangential width average of the peaks:

$$R_s = \frac{(t_2 - t_1)}{0.5(W_1 + W_2)}$$

Selectivity (α)

A thermodynamic factor that is a measure of relative retention of two substances, fixed by a certain stationary phase and mobile phase composition. Where k_1 and k_2 are the respective capacity factors.

$$\alpha = \frac{\mathbf{k}_2}{\mathbf{k}_1}$$

Tailing Factor (T)

A measure of the symmetry of a peak, given by the following equation where $W_{_{0.05}}$ is the peak width at 5% height and f is the distance from peak front to apex point at 5% height. Ideally, peaks should be Gaussian in shape or totally symmetrical.

van Deemter Equation

An equation used to explain band broadening in chromatography. The equation represents the height equivalent of a theoretical plate (H) and has three terms. The A term is used to describe eddy diffusion, which allows for the different paths a solute may follow when passing over particles of different sizes.

The B term is for the contribution caused by molecular diffusion or longitudinal diffusion of the solute while passing through the column. The C term is the contribution of mass transfer and allows for the finite rate of transfer of the solute between the stationary phase and mobile phase. u is the linear velocity of the mobile phase as it passes through the column.

70105-054630 50% ACN / 50%

25mM KH₃PO₄ at pH indicated

0.8mL/min

1. Uracil

2 Tolmetin 3. Naproxin

4. Fenoprofen

5. Diflunisal 6. Indometacin

7. Ibruprofen

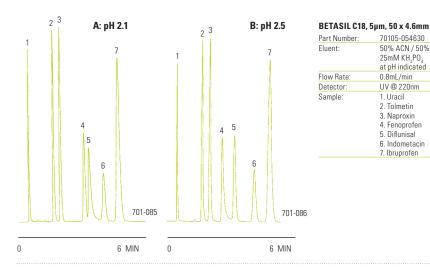
UV @ 220nm

Selecting the Right Buffer

A partial list of common buffers and their corresponding pH values is shown in the Common Buffer Systems table. Perhaps the most common HPLC buffer is some form of phosphoric acid. Remember that a true buffer should have the ability to resist pH change when a sample is introduced at a different pH, and that buffer capacity is only 100% at the pK value of the acid or base. At pH 4, phosphate is a poor buffer and would change rapidly toward one of its pK values if a more acidic or basic sample were introduced.

As a rule, one should work within ±1pH unit of the buffer pK, value for good pH control of the mobile phase. Adequate buffer concentrations for HPLC tend to be in the 10-100 millimolar level depending on the size and nature of the sample, as well as the column packing material. Phases based on highly pure silica with robust bondings such as the Hypersil GOLD range, are often more compatible with dilute buffers than traditional packings.

When control at a lower pH (2-3) is desired, phosphate, or stronger organic acids such as TFA or acetic acid, are commonly used. If control at pH 4-5 is desired, an organic acid buffer such as acetate or citrate should be considered in place of phosphate.


The figure to the right shows the importance of choosing the correct pH for a separation. Even slight changes in pH, either from measuring errors, mixing complications with the pump, or atmospheric water adsorption into the mobile phase, can alter any method if not properly buffered.

Care should be taken when choosing a buffer and organic modifier mixture to ensure that a solution of the two does not produce a solid salt which could cause blockages and system contamination.

Buffers should always be flushed from the analytical column and instrument after use to avoid salts being deposited on delicate frits etc.

Common Buffer Systems

Buffer		pKa	Useful pH Range	MS-Compatible
TFA		0.30		Yes
Phosphate	рК ₁	2.1	1.1 – 3.1	No
	pK ₂	7.2	6.2-8.2	No
	pK₃	12.3	11.3 – 13.3	No
Citrate	рК ₁	3.1	2.1 - 4.1	No
	pK ₂	4.7	3.7 – 5.7	No
	рК _з	5.4	4.4-6.4	No
Formate		3.8	2.8-4.8	Yes
Acetate		4.8	3.8 - 5.8	Yes
Tris Base (Trizma, THAM)	••••••	8.3	7.3 – 9.3	Yes
Ammonia	•••••	9.2	8.2 - 10.2	Yes
Borate	•••••	9.2	8.2 - 10.2	No
Diethylamine	••••••	10.5	9.5 — 11.5	Yes
Carbonate	рК ₁	6.4	5.4 - 7.4	Yes
	pK ₂	10.3	9.3 – 11.3	Yes
Triethanolamine		7.80		Yes

Effect of small changes in pH on the separation of mildly ionizable compounds

Buffer Selection for LC/MS

Buffer choice will be very dependent on the analyte and the instrumentation used. Ideally, LC/MS applications should use a volatile buffer as this will not form a contaminating deposit on the source. Inorganic acids, involatile buffers and ion-pair reagents should all be avoided. Typical LC/MS buffers include:

- Ammonium acetate/formate/hydrogen carbonate (< 50mM)
- Formic/acetic acid (0.01 1% v/v)
- Trifluoroacetic acid (< 0.1% v/v)
- Trialkylamine (< 0.1% v/v) and aqueous ammonia type bases
- TRIS
- BIS-TRIS propane

Note: There are LC/MS instruments available, for example the Thermo Scientific Surveyor MSQ LC/MS. which incorporate a self-cleaning mechanism to reduce the build up of inorganic buffers on the source during routine use. Care should still be taken not to purposefully over-contaminate the instrument source as this will lead to operating difficulties.

Preparation of Mobile Phases

Correct solvent preparation is very important. It can save vast amounts of time spent troubleshooting spurious peaks, baseline noise etc.

Quality

All reagents and solvents should be of the highest quality. HPLC grade reagents may cost slightly more than lower grade reagents, but the difference in purity is marked. HPLC grade reagents contain no impurities to produce spurious peaks in a chromatogram baseline whereas lower grade reagents do contain trace levels of impurities, which may produce spurious baseline peaks.

Ensure that any water used in buffer preparation is of the highest purity. Deionized water often contains trace levels of organic compounds and therefore is not recommended for HPLC use. Ultra pure HPLC water ($18m\Omega$ resistivity) is generated by passing deionized water through an ion exchange bed. Modern water purification instruments use this mechanism to produce water of suitable quality in high volumes. Preferably, HPLC grade water can be purchased from solvent suppliers.

Important: Do not store HPLC grade water in plastic containers. Additives in the plastic may leach into the water and contaminate it. Always store HPLC grade water in glass containers.

Buffers

All buffers should be prepared freshly on the day required. This practice ensures that the buffer pH is unaffected by prolonged storage and that there is no microbial growth present. Changes in pH and microbial growth will affect chromatography.

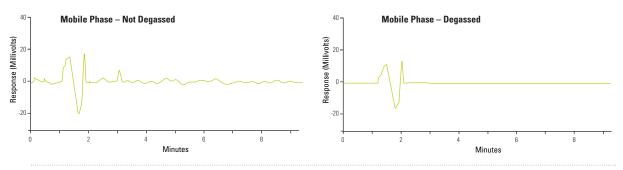
If buffer solutions are stored, be aware that they have a finite lifetime. Refer to pharmacopoeia monographs or similar for further guidance on buffer shelf life.

Buffer reagents can contain a stabilizing agent, for example, sodium metabisulphite. These stabilizing agents often affect the optical and chromatographic behavior of buffer solutions, so it is often worth buying reagents that contain no stabilizer. Containers of solid reagent are easily contaminated by repeated use. For this reason, we recommend that reagents be purchased in low container weights.

Filtration

Ideally, all HPLC solvents should be filtered through a 0.45µm filter before use This removes any particulate matter that may cause blockages. After filtration, the solvents should be stored in a covered reservoir to prevent re-contamination with dust etc. Filtering HPLC solvents will benefit both your chromatography and the wear and tear of the HPLC system. Pump plungers, seals and check valves will perform better and lifetimes will be maximized.

Degassing


Before the freshly prepared mobile phase is pumped around the HPLC system, it should be thoroughly degassed to remove all dissolved gasses. Dissolved gas can be removed from solution by:

- Bubbling with helium
- Sonication
- Vacuum filtration

If the mobile phase is not degassed, air bubbles can form in the low pressure of the detector cell resulting in problems with system instability, spurious baseline peaks etc.

The most efficient form of degassing is bubbling with helium or another low solubility gas. If this method is available, we recommend that the mobile phase is continually degassed at very low levels throughout the analysis. This will inhibit the re-adsorption of gases over the analysis time.

Note: Ensure that the solvent reservoir has a vent to the atmosphere to prevent the build up of pressure inside the reservoir.

Baseline noise from gas in mobile phase

Thermo Scientific Chromatography Columns and Consumables 2014-2015

Xylene Water Trichloroethylene Toluene Tetrahydrofuran Di-iso-Propyl Ether Iso-Propanol n-Propanol Pentane Data Sourced from: CRC Handbook of Chemistry and Physics - 73rd Edition The Merck Index - 12th Edition High Purity Solvent Guide, Burdick & Jackson Laboratories, Inc. The HPLC Solvent Guide, 2nd Edition, Paul C Sadek HPLC Columns, Theory, Technology & Practice, Uwe D Neue Fisher Solvent Table Methyl Ethyl Ketone Methyl-t-Butyl Ether Methano Hexane Heptane Diethyl Ether mixes where, in some proportions, two phases will be produced Ethyl Acetate Those squares shaded as "immiscible" refer to solvent Ethanol Dioxane **Dimethyl Sulphoxide** mmiscible **Dimethylformamide** Dichloromethane 1.2-Dichloroethane Cyclohexane Chloroform Carbon Tetrachloride **Butyl Acetate** n-Butanol Benzene Acetonitrile Acetone Acetic acid N-N⁻ Dimethylformamide N,N'-Dimethylacetamide **Carbon Tetrachloride Dimethyl Sulphoxide Aethyl Butyl Ketone V-Methylformamide** Methyl-t-Butyl Ether **Methylene Chloride Methyl Ethyl Ketone** ,2-Dichloroethane Di-iso-Propyl Ether **Frichloroethylene Dichloromethane Fetrahydrofuran** lethoxyethanol **Ethylene Glycol** sopropyl Ether Cyclohexanone **Methyl Acetate** -Chlorobutane Vitromethane Cyclopentane **Sutyl Acetate** n-Butyl Ether Cyclohexane Ethyl Acetate **Diethyl Ether** so-Propanol cetic acid cetonitrile Chloroform n-Propanol -Butanol -Heptane Aethanol sooctane n-Decane -Hexane ensene o-Xylene Dioxane Solvent cetone Ethano Foluene Nater Water solubility (W/W%) 7.8 0.43 0.08 0.815 0.815 0.811 1.3 Miscible Miscible Miscible Miscible Miscible Miscible Miscible Miscible Miscible 8.7 6.89 0.0004 0.0012 Miscible 4.8 24 0.004 Miscible Miscible Miscible 0.18 0.0002 0.01 0.01 0.11 0.19 0.62 9 2.1 0.05 0.11 0.018 Boiling point 66 Viscosity (cP, 20°C) Refractive index 1.391 1.410 1.407 1.402 1.397 1.368 (1,424) (1,457) (1,457) (1,457) (1,447) (1,447) (1,447) (1,447) (1,446) (1,336) (1,336) (1,336) (1,336) (1,336) (1,336) (1,446) (1,336 UV Cutoff (nm) Polarity Index $\begin{array}{c} 0.01\\ 0.02\\$ Solvent Strength 0.39 0.1 0.21 0.28 0.42 0.43 0.47 0.55 0.6 0.64 0.65 0.65 2 0.56 0.65 0.04 0.64 0.62 0.56 0.88 0.58 0.01 0.01 0.95 0.35 0.51 0.82 0.82 0.45 0.29 -2 0.26 0.01 0.04 0.05 1.11 0.4

Solvent Properties (vs Silica Gel) and Miscibility

Solvent Properties and Miscibility

Chromophore Detection Wavelengths

Chromophores are light absorbing groups. Their behavior is used to allow the detection of analytes. They have one or more detection wavelengths, each of which has a molar adsorbtivity associated with it. The information contained in the following table is intended as a guide to common chromophores. It is not an exhaustive list.

Chromophore		λmax (nm)	εmax (L/m/cm)
Acetylide	-C==C-	175 — 180	6,000
Aldehyde	-CHO	210	Strong
,		280 - 300	11 – 18
Amine	-NH ₂	195	2,800
Azidin	> C=N-	190	5,000
Azo	-N=N-	285-400	3-25
Benzene		184	46,700
		202	6,900
	< <u> </u>	255	170
Carboxyl	-соон	200 - 210	50 - 70
Ester	-COOR	205	50
Ether	-0-	185	1,000
Ethylene	-C=C-	190	8,000
Ketone	>C=0	195	1,000
		270 – 285	18 - 30
Napthalene		220	112,000
·		275	175
		312	5,600
Nitrate	-ONO ₂	270	12
	-(C=C)-, acyclic	210 - 230	21,000
	-(C=C) ₃	260	35,000
	C=C-C=C	219	6,500
	C=C-C=N	220	23,000
	C=C-C=O	210 - 250	10,000 - 20,000
	C=C-NO ₂	300 - 350	Weak
Nitrile	-C==N	160	-
	-ONO	220 - 230	1,000 - 2,000
		300 - 400	10
Nitro	-N0 ₂	210	Strong
Nitroso	-N=0	302	100
Oxime	-NOH	190	5,000
Pyridine	~	174	80,000
		195	6,000
	N	251	1,700
Sulfone	-S0 ₂ -	180	Very strong
Sulfoxide	> S-0	210	1,500
Thioether	-S-	194	4,600
	215	1,600	
Thiol	-SH	195	1,400

Column Cleaning and Regeneration

Testing of column performance can be undertaken using the experimental conditions in the test certificate provided with the column. The column efficiency, capacity factor, etc. should be measured at the start and end of the clean-up procedure to ensure that it has been performed successfully and has improved the column performance.

In all instances, the volume of solvent used is 40-60 column volumes unless otherwise stated. Ensure that no buffers or samples are present on the column and that the solvent used prior to the clean up is miscible with the first wash solvent. After the clean up, ensure that the test mobile phase is miscible with the last solvent in the column.

Normal Phase Media

- 1. Flush with tetrahydrofuran
- 2. Flush with methanol
- 3. Flush with tetrahydrofuran
- 4. Flush with methylene chloride
- 5. Flush with benzene-free n-hexane

Reversed Phase Media

- 1. Flush with HPLC grade water; inject 4 aliquots of 200µL DMSO during this flush
- 2. Flush with methanol
- 3. Flush with chloroform
- 4. Flush with methanol

Anion Exchange Media

- 1. Flush with HPLC grade water
- 2. Flush with gradient of 50mM to 1M appropriate buffer solution
- 3. Flush with HPLC grade water
- 4. Flush with methanol
- 5. Flush with chloroform

Cation Exchange Media

- 1. Flush with HPLC grade water; inject 4 aliquots of 200µL DMSO during this flush
- 2. Flush with tetrahydrofuran

Protein Size Exclusion Media

There are two wash/regeneration procedures associated with the removal of contaminants from protein size exclusion media.

Weakly Retained Proteins

1. Flush with 30mL 0.1M pH 3.0 phosphate buffer

Strongly Retained Proteins

1. Flush for 60 minutes using a 100% water to 100% acetonitrile gradient

Porous Graphitic Carbon

There are four wash or regeneration procedures associated with porous graphitic carbon. The one(s) used will depend on the analytes and solvents that have been used with the column

Acid/Base Regeneration

Suitable for ionized species analyzed in strongly aqueous mobile phases.

- 1. Invert the column
- 2. Flush with 50mL tetrahydrofuran:water (1:1) containing 0.1% trifluoroacetic acid
- 3. Flush with 50mL tetrahydrofuran:water (1:1) containing 0.1% triethylamine or sodium hydroxide
- 4. Flush with 50mL tetrahydrofuran:water (1:1) containing 0.1% trifluoroacetic acid
- 5. Flush column with 70 column volumes of THF
- 6. Flush with methanol/water (95:5) to re-equilibrate
- 7. Re-invert the column
- Author: R. Plumb Glaxo, UK

Strong Organic Regeneration

Suitable for applications involving polar and/ or ionized species analyzed in aqueous mobile phases.

- 2. Flush with 120mL dibutylether
- 3. Flush with 50mL acetone
- 4. Flush with aqueous mobile phase until equilibrated

Normal Phase Regeneration

Suitable for applications running predominantly in normal phase mobile phases.

- 1. Flush with 50mL dichloromethane
- 2. Flush with 50mL methanol
- 3. Flush with 50mL water
- 4. Flush with 50mL 0.1M hydrochloric acid
- 5. Flush with 50mL water
- 6. Flush with 50mL methanol
- 7. Flush with 50mL dichloromethane

8. Flush with mobile phase until equilibrated Author: A. Karlsson – Uppsala, Sweden

Removal of TFA and DEA

TFA and DEA have the potential to adsorb to the surface of porous graphitic carbon; after using these additives in the mobile phase, regeneration of the column should be undertaken to ensure the original Hypercarb selectivity and optimum performance will always be achieved. The regeneration is as follows:

- 1. Removal of TFA: Flush column with 70 column volumes of THF.
- 2. Removal of DEA: Set column oven to 75°C and flush column with 120 column volumes of ACN.

Polymeric Media with Metallic Counter Ions

There are three types of regeneration available for polymeric columns with metal counter ion. Details of each procedure are listed in the following table.

Column Type	Metal Contamination	Organic Contamination	Column Cleaning
Hydrogen Counter Ion	Pump in reverse flow mode at 0.1mL/min with 0.1M H_2SO_4 @ 25°C for 4 to 16 hr	Pump in reverse flow mode at 0.1mL/min with 20:80 ACN: $\rm H_2O$ @ 25°C for 4 hr	Pump in reverse flow mode at 0.1mL/min with 20:80 ACN: 0.01M $\rm H_2SO_4$ @ 65°C for 4 hr
Calcium Counter Ion	Pump in reverse flow mode at 0.1mL/min with 0.1M Ca(NO_3)_2 @ pH 6.3 and 85°C for 4 to 16 hr	Pump in reverse flow mode at 0.1mL/min with 20:80 ACN:H ₂ 0 @ 25°C for 4 hr	Pump in reverse flow mode at 0.1mL/min with 20:80 ACN:H ₂ 0 @ 25°C for 4 hr
Sodium Counter Ion	Pump in reverse flow mode at 0.1mL/min with 0.1M NaNO ₃ @ 85°C for 4 to 16 hr	Pump in reverse flow mode at 0.1mL/min with 20:80 ACN:H ₂ O @ 25°C for 4 hr	Pump in reverse flow mode at 0.1mL/min with 20:80 ACN:H ₂ O @ 25°C for 4 hr
Lead Counter Ion	Pump in reverse flow mode at 0.1mL/min with 0.1M Pb(NO_3)_2 @ pH 5.3 and 85°C for 4 to 16 hr	Pump in reverse flow mode at 0.1mL/min with 20:80 ACN: $\rm H_2O$ @ 25°C for 4 hr	Pump in reverse flow mode at 0.1mL/min with 20:80 ACN: $\rm H_2O$ @ 25°C for 4 hr

1. Flush with 50mL acetone

Resources for Chromatographers

Chromatography Resource Cente

Our web-based resource center provides technical support, applications, technical tips and literature to help move your separations forward. Visit www.thermoscientific.com/chromatography

How to order

USA and Canada 800 332 3331 865 354 4616 fax

France +33 (0)1 60 92 48 34 +33 (0)1 60 92 49 00 fax Consommableslcgcfr@thermofisher.com

Germany +49 (0) 2423 9431 -20 or -21 +49 (0) 6103 408 1111 fax lcgc.consumables.DE@thermofisher.com

United Kingdom

+44 1928 534110 +44 1928 534001 fax lcgc.consumables@thermofisher.com

China

+86 800 810 5118 or +86 400 650 5118 Shanghai: +86 21 68654588 Bejing: +86 10 84193588 Guangzhou: +86 20 83145188 analyze.cn@thermofisher.com **India** +91 22 6742 9494

+91 22 6742 9495 fax analyze.in@thermofisher.com

Japan

0120 753 670 (free call domestic) 0120 753 671 fax analyze.jp@thermofisher.com

Thermo Fisher Scientific Australia Pty Ltd 1300 735 292 (free call domestic) 1800 067 639 fax AUinfo@thermofisher.com

Thermo Fisher Scientific New Zealand Ltd

0800 933 966 (free call domestic) 0800 329 246 fax nzinfo@thermofisher.com

All Other Enquiries

+44 (0) 1928 534 050 +44 (0) 1928 534 049 fax salesorders.columns.uk@thermofisher.com

Technical Support

For advice and support, please visit our website: www.thermoscientific.com/chromexpert

For more information visit: www.thermoscientific.com/chromatography

© 2014 Thermo Fisher Scientific Inc. All rights reserved. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

