

Your world of chromatography

GC Columns and Accessories

Thermo Scientific GC columns offer high temperature stability and exhibit low bleed and long lifetimes. From general purpose non-polar to polar columns, Thermo Scientific™ TraceGOLD, Thermo Scientific™ TRACE™ and Thermo Scientific™ TracePLOT™ columns provide excellent quality and performance, with guaranteed reproducibility. Our range of GC accessories includes all the consumables and tools necessary for today's gas chromatographer.

Section Contents

GC Column Selection 3-002	Capillary Accessories 3-094
TraceGOLD GC Columns 3-022	Tools
TRACE GC Columns 3-061	Syringes
TracePLOT GC Columns 3-083	GC Reagents
Gas Management 3-087	GC Sample Handling 3-137
Injection Port Septa 3-090	GC Instrument Accessories 3-145
Injection Port Liners	GC Technical Information 3-159

Featured Products

TraceGOLD GC Columns

Offering you a leap forward in column performance delivering low bleed and superior inertness

PAGE 3-022

TracePLOT GC Columns

The latest innovation in PLOT column technology, for permanent gas and solvent analysis

PAGE 3-083

GC Syringes

A new enhanced portfolio for accuracy and precision in sample injection

PAGE 3-109

Faster analysis with no compromise in separation quality

PAGE 3-052

TRACE 1300 Series GC Consumables

Proven GC consumables for optimum system performance

PAGE 3-090

GC Reagents

High quality reagents making the undetectable detectable

PAGE 3-117

GC Column Selection

When selecting a GC column for your analysis, it can often be difficult to choose the most appropriate column because of the wide range of options. However, the choice can be simplified by considering a number of questions about the planned separation. This section provides useful information to help you determine the most suitable column for your analysis.

Column Selection for Existing or Regulated Methods

This section provides a number of tools to aid in selecting the most appropriate Thermo Scientific GC column. The Thermo Scientific GC column phase table lists details for the wide array of phases offered in the TraceGOLD, TRACE and TracePLOT GC column ranges. The GC column selection by manufacturer table provides a quick cross reference for Thermo Scientific columns to other GC column manufacturers. If you are following an ASTM, NIOSH or US EPA method, please refer to the column selection by method tables for the best Thermo Scientific product.

Method Development Considerations

When first developing a method, you should consider these column characteristics to determine the best column for the separation:

- A. Column Phase
- B. Internal Diameter
- C. Film Thickness
- D. Column Length

A. Column Phase

In GC, the separation of two analytes occurs due to differences in their interaction with the stationary phase, therefore a phase must be chosen that matches the properties of the sample. For example, if the components have different boiling points (greater than 2°C), a non-polar column such as the TG-1MS is recommended. If the products differ primarily in their polarities, then a polar column such as the TG-WaxMS will be ideal.

If you know the particular class of your sample, please refer to the column selection by application for a recommended phase (see page **3-010**). Always select the least polar column which will perform the separation.

B. Internal Diameter

The selection of the internal diameter is often determined by the instrument or detection method. Most modern GC equipment will accommodate most column sizes. With a larger internal diameter, column sample capacity increases, but resolution and sensitivity decrease. Conversely, a smaller ID column can improve resolution and sensitivity, but with the drawback of reduced sample capacity and a greater need for sample preparation. It is a good idea to find a similar application which gives separation of the desired components and use this as a guide.

C. Film Thickness

Increasing the film thickness increases the sample capacity of the column and slows the elution of the peaks which can help when analyzing volatile compounds. A thicker film also reduces the potential of overloading the column, thus improving the resolution.

However, a thicker film can be more sensitive to degradation. The same component will elute at a higher temperature on a thick film when compared to a thin film.

Compounds with high boiling points or those with a high molecular weight should be analyzed using a thin film to improve resolution and avoid unnecessarily long analysis times.

Another factor to consider is the phase ratio () which is calculated using both the internal diameter and film thickness in the following equation:

 $= \frac{\text{Internal diameter (µm)}}{4 \text{ x Film thickness (µm)}}$

The phase ratio can be used in two ways:

- 1. To categorize the best dimensions for an application:
- a. For volatile samples < 100
- b. For general samples ~ 250
- c. For high molecular weight samples > 400

 To transfer an analysis from a column of one ID to another without changing the method substantially, choose a column with a similar value as this will have similar retention properties.

n)				Film	Thickr	ness (µ	ım)
r (mm)		0.1	0.25	0.5	1	1.8	3
nete	0.1	250	100	50	25	14	8
Diar	0.25	625	250	125	63	35	21
ernal	0.32	800	320	160	80	44	27
Inte	0.53	250 625 800 1325	530	265	133	74	44

Phase ratio () of common column dimensions

D. Column Length

A longer column length will provide greater efficiency and resolution, but this is not a linear relationship. Resolution is proportional to the square root of column length, so doubling the column length will increase resolution by approximately 40%. However, increasing the column length will also increase the retention time. Double column length, twice the analysis time. Generally, it is recommended to use the shortest column which will perform the desired separation.

Additional Considerations

Several generalizations regarding GC columns exist that you might rely on when in doubt. First, 95% of all GC columns used are either TG-1MS, TG-5MS or TG-WaxMS type columns. A good starting column is a 30m x 0.25mm ID, 5% Phenyl column with a 0.25µm film thickness, such as the TG-5MS. (Part number 26098-1420; Page **3-025**).

This is a non-polar column, which separates predominately on boiling point, but has some polar characteristics.

For further assistance in choosing the right column for your separation, please contact our technical support help desk. www.thermoscientific.com/chromexpert

GC Column Phase Information

Range	Column	Phase	Polarity	Maximum Operating Temperature
TraceGOLD	TG-1MS	100% Methylpolysiloxane	Non-Polar	330°C / 350°C
	TG-XLBMS	Proprietary	Non-Polar	360°C
	TG-5MS	5% Phenyl Methylpolysiloxane	Non-Polar	330°C / 350°C
	TG-SQC	Proprietary	Non-Polar	330°C / 350°C
	TG-5MS AMINE	Base Optimised 5% Phenyl Methylpolysiloxane	Non-Polar	300°C / 315°C
	TG-5SilMS	Similar to 5% Phenyl Methylpolysiloxane	Non-Polar	330°C / 350°C
	TG-5HT	5% Phenyl Methylpolysiloxane	Non-Polar	380°C / 400°C
	TG-35MS	35% Phenyl Methylpolysiloxane	Mid-Polarity	300°C / 320°C
	TG-35MS AMINE	Base Optimised 35% Phenyl Methylpolysiloxane	Mid-Polarity	220°C
	TG-1301MS	6% Cyanopropylphenyl Methylpolysiloxane	Mid-Polarity	260°C / 280°C
	TG-624	6% Cyanopropylphenyl Methylpolysiloxane	Mid-Polarity	240°C
	TG-624SilMS	Similar to 6% Cyanopropylphenyl Methylpolysiloxane	Mid-Polarity	320°C
	TG-VRX	Proprietary		260°C
	TG-VMS	Proprietary		260°C
	TG-1701MS	14% Cyanopropylphenyl Methylpolysiloxane	Mid-Polarity	260°C / 280°C
	TG-17MS	50% Phenyl Methylpolysiloxane	Mid-Polarity	300°C / 320°C
	TG-17SilMS	Similar to 50% Phenyl Methylpolysiloxane	Mid-Polarity	340°C / 360°C
	TG-225MS	50% Cyanopropylmethyl Phenylmethylpolysiloxane	Mid-Polarity	220°C / 240°C
	TG-200MS	Trifluoropropyl Methylpolysiloxane	Mid-Polarity	320°C / 340°C
	TG-WaxMS	Polyethylene Glycol (PEG)	Polar	240°C / 260°C
	TG-WaxMS A	Acid Optimised Polyethylene Glycol (PEG)	Polar	240°C / 250°C
	TG-WaxMS B	Base Optimised Polyethylene Glycol (PEG)	Polar	200°C / 220°C
	TG-OCP I	Proprietary		340°C
	TG-OCP II	Proprietary		340°C
	TG-OPP I	Proprietary		330°C
	TG-OPP II	Proprietary		330°C
	TG-ALC I	Proprietary		260°C
	TG-ALC II	Proprietary		260°C
	TG-Dioxin	Proprietary		340°C
	TG-POLAR	95% Cyanopropyl Phenylpolysiloxane	Polar	275°C
	TG-1MT	100% Methylpolysiloxane	Non-Polar	430°C
	TG-5MT	5% Phenyl Methylpolysiloxane	Non-Polar	430°C
	TG-WaxMT	Polyethylene Glycol (PEG)	Polar	240°C / 260°C

GC Column Phase Information continued

Range	Column	Phase	Polarity	Maximum Operating Temperature
TRACE	TR-1MS	100% Dimethyl Polysiloxane	Non-Polar	340°C / 360°C
	TR-5	5% Phenyl Methylpolysiloxane	Non-Polar	320° C / 340° C for films $\leq 1.5 \mu$ m 280° C / 300° C for films $> 1.5 \mu$ m
	TR-5MS	5% Phenyl Polysilphenylene-siloxane	Non-Polar	360°C / 370°C for films ≤ 1.5µm 350°C / 360°C for films > 1.5µm
	TR-5HT	5% Phenyl Polycarborane Siloxane	Non-Polar	380°C / 400°C
	TR-35MS	35% Phenyl Polysilphenylene-siloxane	Mid-Polarity	330°C / 360°C
	TR-1701	14% Cyanopropylphenyl Polysiloxane	Mid-Polarity	280°C / 300°C
	TR-50MS	50% Phenyl Polysilphenylene-siloxane	Mid-Polarity	360°C / 370°C
	TR-225	50% Cyanopropylphenyl Polysiloxane	Mid-Polarity	230°C / 250°C
	TR-Wax	Polyethylene Glycol (PEG)	Polar	260°C / 280°C for films ≤ 1.0µm 240°C / 260°C for films > 1.0µm
	TR-WaxMS	Polyethylene Glycol (PEG)	Polar	260°C / 280°C
	TR-FFAP	TPA Modified Polyethylene Glycol (PEG)	Polar	240°C / 250°C
	TR-SimDist	100% Dimethyl Polysiloxane	Non-Polar	400°C for films ≤ 1.0µm 370°C for 2.65µm films
	TR-V1	6% Cyanopropylphenyl Polysiloxane	Mid-Polarity	280°C / 300°C
	TR-FAME	70% Cyanopropyl Polysilphenylene-siloxane	Polar	250°C / 260°C
	TR-524	Cyanopropylphenyl Dimethyl Polysiloxane	Mid-Polarity	240°C / 260°C
	TR-525	Proprietary	Mid-Polarity	340°C / 360°C
	TR-527	5% Phenyl Polysilphenylene-siloxane	Non-Polar	330°C / 350°C
	TR-8095	8% Phenyl Polycarborane-siloxane	Mid-Polarity	360°C / 370°C
	TR-8270	5% Phenyl Polysilphenylene-siloxane	Non-Polar	330°C / 350°C
	TR-PCB 8MS	8% Phenyl Polysilphenylene-siloxane	Mid-Polarity	330°C / 350°C
	TR-Dioxin 5MS	5% Phenyl Polysilphenylene-siloxane	Non-Polar	330°C / 350°C
	TR-Biodiesel (M)	100% Dimethyl Polysiloxane	Non-Polar	300°C / 320°C
	TR-Biodiesel (F)	Polyethylene Glycol (PEG)	Polar	280°C / 300°C
	TR-Biodiesel (G)	5% Phenyl Polysilphenylene-siloxane	Non-Polar	380°C / 400°C
	TR-DoA5	5% Phenyl Methylpolysiloxane	Non-Polar	330°C / 350°C
	TR-DoA35	35% Phenyl Polysilphenylene-siloxane	Mid-Polarity	330°C / 350°C
	TR-Pesticide	5% Phenyl Methylpolysiloxane	Non-Polar	330°C / 350°C
	TR-Pesticide II	Proprietary	Non-Polar	330°C / 350°C
	TR-Pesticide III	35% Phenyl Methylpolysiloxane	Mid-Polarity	300°C / 320°C
	TR-Pesticide IV	35% Phenyl Methylpolysiloxane	Mid-Polarity	300°C / 320°C
racePLOT	TG-Bond Alumina (Na ₂ SO ₄)	Na ₂ SO ₄ Deactivated Aluminium Oxide	Non-Polar	200°C
	TG-Bond Alumina (KCI)	KCI Deactivated Aluminium Oxide	Non-Polar	200°C
	TG-Bond Msieve 5A	Molecular Sieve (5A)	Non-Polar	300°C
	TG-Bond Q	100% Divinylbenzene	Non-Polar	280°C / 300°C
	TG-Bond Q+	Porous Divinylbenzene Polymer	Mid-Polarity	250°C
	TG-Bond S	Divinylbenzene 4-Vinylpyridine	Mid-Polarity	250°C
	TG-Bond U	Divinylbenzene Ethylene Glycol / Dimethylacrylate	Polar	190°C

Download a copy of our GC column selector mobile app www.thermoscientific.com/tracegold

GC Column Selection by Manufacturer

Column	Phase	Manufacturer	Recommended Thermo Scientific Alternative(s)	Page
Capillary	007-1(MS)	Quadrex	TG-1MS	3-023
	007-17(MPS-50)	Quadrex	TG-17MS	3-038
	007-1701	Quadrex	TG-1701MS	3-037
	007-2(MP-5)	Quadrex	TG-5MS	3-025
	007-2(MPS-5)	Quadrex	TG-5SilMS	3-028
	007-23	Quadrex	TR-FAME	3-074
	007-5MS	Quadrex	TG-5MS	3-025
	007-624	Quadrex	TG-624	3-033
	007-CW	Quadrex	TG-WaxMS	3-042
	AT-5	Alltech	TR-5	3-062
	AT50	Alltech	TG-17MS	3-038
	AT-5MS	Alltech	TG-5MS	3-025
	AT-624	Alltech	TG-624	3-033
	AT-Silar	Alltech	TR-FAME	3-074
	AT-Wax	Alltech	TR-WaxMS	3-070
	BP10	SGE	TG-1701MS	3-037
	BP20	SGE	TG-WaxMS	3-042
			TG-WaxMS A	3-043
	BP21	SGE	TR-FFAP	3-071
	BP225	SGE	TG-225MS	3-040
	BP5	SGE	TG-5MS	3-025
		······•	TG-624	3-033
	BP624	SGE	TG-624SilMS	3-034
	DDV1	CCF	TG-1MS	3-023
	BPX1	SGE	TR-SimDist	3-072
	BPX5	SGE	TG-5MS	3-025
	BPX50	SGE	TG-17MS	3-038
		.	TG-17SilMS	3-039
	BPX608	SGE	TG-35MS	3-030
	BPX70	SGE	TR-FAME	3-074
	BPX90	SGE	TG-POLAR	3-051
	BPX-Volatiles	SGE	TG-624	3-033
	CARBOWAX	Agilent	TR-WaxMS	3-070
	CP-1301	Agilent	TG-1301MS	3-032
	CP-FFAP CB	Agilent	TG-WaxMS A TR-FFAP	3-043 3-071
	CP-Select624CB	Agilent	TG-624	3-033
	CP-Sil 19CB	Agilent	TG-1701MS	3-037
	CP-Sil 5CB MS	Agilent	TG-1MS	3-023
	CP-Sil 88	Agilent	TG-5SilMS	3-028
	CP-Sil 8CB	Agilent	TG-5SilMS	3-028
	CP-SimDist	Agilent	TR-SimDist	3-072
	CP-Wax 51 (Amines)	Agilent	TG-WaxMS B	3-044
	CP-Wax 52CB	Agilent	TG-WaxMS TG-WaxMT	3-042 3-060
	CP-Wax 58 CB (FFAP)	Agilent	TG-WaxMS A TR-FFAP	3-043 3-071

GC Column Selection by Manufacturer continued

olumn	Phase	Manufacturer	Recommended Thermo Scientific Alternative(s)	Page
apillary	DB-1	Agilent	TG-1MS TR-1MS	3-023 3-061
	DB-1301	Agilent	TG-1301MS	3-032
	DB-17	Agilent	TG-17MS	3-038
	DB-1701	Agilent	TG-1701MS	3-037
	DB-17ht	Agilent	TG-17MS	3-038
	•	•	TG-17MS	3-038
	DB-17ms	Agilent	TG-17SilMS	3-039
	DB-1ms	Agilent	TG-1MS TR-1MS	3-023 3-061
	DB-200	Agilent	TG-200MS	3-041
	DB-225	Agilent	TG-225MS	3-040
	DB-225ms	Agilent	TG-225MS	3-040
	DB-23	Agilent	TR-FAME	3-074
	DB-2887	Agilent	TR-SimDist	3-072
	DB-35	Agilent	TG-35MS	3-030
	DB-35ms	Agilent	TG-35MS	3-030
	DB-5	Agilent	TR-5 TG-5MS	3-062 3-025
	DB-5.625	Agilent	TG-5MS	3-025
		••••••	TG-5M5	3-023
	DB-5ht	Agilent	TG-5MT	3-059
	DB-5ms	Agilent	TG-5MS TG-5SilMS	3-025 3-028
	DB-624	Agilent	TG-624 TG-624SilMS	3-033 3-034
	DB-ALC1	Agilent	TG-ALC Plus I	3-050
	DB-ALC2	Agilent	TG-ALC Plus II	3-050
	DB-FFAP	Agilent	TG-WaxMS A TR-FFAP	3-043 3-071
	DB-HT Sim Dis	Agilent	TR-SimDist	3-072
	DB-PETRO	Agilent	TG-1MS	3-023
	DB-WAX	Agilent	TG-WaxMS TG-WaxMT	3-042 3-060
	DB-WAXetr	Agilent	TR-WaxMS TG-WaxMS	3-070 3-042
	DB-XLB	Agilent	TG-XLBMS	3-024
	Elite-1301	PerkinElmer	TG-1301MS	3-032
	Elite-17	PerkinElmer	TG-17MS	3-038
	Elite-1701	PerkinElmer	TG-1701MS	3-037
	Elite-17ms	PerkinElmer	TG-17MS	3-038
	Elite-200	PerkinElmer	TG-200MS	3-041
	Elite-23	PerkinElmer	TR-FAME	3-074
	Elite-35ms	PerkinElmer	TG-35MS	3-030
	Elite-5	PerkinElmer	TR-5	3-062
	Elite-5ms	Perkin Elmer	TG-5MS	3-025
	Elite-5ht	PerkinElmer	TG-5HT	3-029
	Elite-624	PerkinElmer	TG-624	3-033
	Elite-FFAP	PerkinElmer	TG-VaxMS A TR-FFAP	3-043 3-071
	Elite-WAX	PerkinElmer	TG-WaxMS	3-071
	Elite-WAX ETR	PerkinElmer	TG-WaxMS	3-042

Column	Phase	Manufacturer	Recommended Thermo Scientific Alternative(s)	Page
apillary	HP-1	Agilent	TG-1MS TR-1MS	3-023 3-061
	HP-17	Agilent	TG-17MS TG-17SiIMS	3-038 3-039
	HP-1701	Agilent	TG-1701MS	3-037
	HP-1MS	Agilent	TG-1MS TG-1MT	3-023 3-058
	HP20M	Agilent	TG-WaxMS	3-042
	HP-23	Agilent	TR-FAME	3-074
	HP-35	Agilent	TG-35MS	3-030
	HP-35MS	Agilent	TG-35MS	3-030
	HP-5	Agilent	TR-5	3-062
	HP-50+	Agilent	TG-17MS	3-038
	HP-5MS	Agilent	TG-5MS TG-5SiIMS	3-025 3-028
	HP5-TA	Agilent	TG-5MS	3-025
	HP-88	Agilent	TR-FAME	3-074
	HP-FFAP	Agilent	TG-WaxMS A TR-FFAP	3-043 3-071
	HP-INNOWax	Agilent	TG-WaxMS TR-WaxMS	3-042 3-070
	HP-VOC	Agilent	TG-624 TG-624SiIMS	3-033 3-034
	HP-Wax	Agilent	TG-WaxMS TR-WaxMS	3-042 3-070
	HT5	SGE	TG-5HT	3-029
	HT8	SGE	TR-PCB 8MS	3-076
	MDN-1	Sigma Aldrich	TG-1MS	3-023
	MDN-35	Sigma Aldrich	TG-35MS	3-030
	MDN-5	Sigma Aldrich	TR-5 TG-5MS	3-062 3-025
	MDN-5S	Sigma Aldrich	TG-5SilMS	3-028
	Nukol	Sigma Aldrich	TG-WaxMS	3-042
	0V-17	Ohio Valley	TG-17MS	3-038
	0V-1701	Ohio Valley	TG-1701MS	3-037
	0V-5	Ohio Valley	TR-5	3-062
	0V-624	Ohio Valley	TG-624	3-033
	Petrocol 2887	Sigma Aldrich	TR-SimDist	3-072
	Petrocol DH	Sigma Aldrich	TG-1MS	3-023
	Petrocol EX2887	Sigma Aldrich	TR-SimDist	3-072
	MXT-1	Restek	TG-1MT	3-058
	MXT-5	Restek	TG-5MT	3-059
	MXT-WAX	Restek	TG-WaxMT	3-060
	Rtx-1301	Restek	TG-1301MS	3-032
	Rtx-1701	Restek	TG-1701MS	3-037
	Rtx-1MS	Restek	TG-1MS	3-023
	Rtx-200	Restek	TG-200MS	3-041
	Rtx-200MS	Restek	TG-200MS	3-041
	Rtx-225	Restek	TG-225MS	3-040
	Rtx-2330	Restek	TG-POLAR	3-051
	Rtx-2560	Restek	TR-FAME	3-074
	Rtx-2887	Restek	TR-SimDist	3-072
	Rtx-35	Restek	TG-35MS	3-030
	Rtx-35 Amine	Restek	TG-35MS AMINE	3-031

GC Column Selection by Manufacturer continued

Column	Phase	Manufacturer	Recommended Thermo Scientific Alternative(s)	Page
Capillary	Rtx-35MS	Restek	TG-35MS	3-030
	Rtx-5	Restek	TG-5MS	3-025
		TIOSTON	TR-5	3-062
	Rtx-5 Amine	Restek	TG-5MS AMINE	3-027
	Rtx-50	Restek	TG-17MS	3-038
	Rtx-5SilMS	Restek	TG-5SilMS	3-028
	Rtx-624	Restek	TG-624	3-033
	Rtx-CLPesticides	Restek	TG-OCP I	3-048
	Rtx-CLPesticides2	Restek	TG-OCP II	3-048
	Rtx-OPPesticides	Restek	TG-OPP I	3-049
	Rtx-OPPesticides2	Restek	TG-OPP II	3-049
	Rtx-Dioxin 2	Restek	TG-Dioxin	3-047
	Rtx-VMS	Restek	TG-VMS	3-036
	Rtx-Volatiles	Restek	TG-624	3-033
	Rtx-VRX	Restek	TG-VRX	3-035
	Rtx-Wax	Restek	TG-WaxMS	3-042
	Rxi-17	Restek	TG-17MS	3-038
	Rxi-17SilMS	Restek	TG-17SilMS	3-039
	Rxi-1ms	Restek	TG-1MS	3-023
	Rxi-5HT	Restek	TG-5HT	3-029
	Rxi-5MS	Restek	TG-5MS	3-025
	Rxi-5SilMS	Restek	TG-5SilMS	3-028
	Rxi-624SilMS	Restek	TG-624SilMS	3-034
	Rxi-XLB	Restek	TG-XLBMS	3-024
	SE-30	Agilent	TG-1MS	3-023
	SE-52	Agilent	TG-5MS	3-025
	SE-54	Agilent	TG-5MS	3-025
	SolGel-Wax	SGE	TG-WaxMS	3-042
	SP-2100	Supelco	TG-1MS	3-023
	SP-2250	Supelco	TG-17MS	3-038
	SP-2330	Supelco	TR-FAME	3-074
	SP-2380	Supelco	TR-FAME	3-074
	SPB-1	Supelco	TG-1MS	3-023
	SPB-17	Supelco	TG-17MS	3-038
	SPB-35	Supelco	TG-35MS	3-030
	SPB-5	Supelco	TR-5 TG-5MS	3-062 3-025
	SPB-50	Supelco	TG-17MS	3-038
	SUPELCOWAX-10	Supelco	TG-WaxMS	3-042
		oupeico	TR-WaxMS	3-070
	Stabilwax	Restek	TG-WaxMS	3-042
	Stabilwax-DA	Restek	TG-WaxMS A TR-FFAP	3-043 3-071
	Stabilwax-DB	Restek	TG-WaxMS B	3-044
	SUPELCOWAX-10	Supelco	TG-WaxMS	3-042
	VF-17ms	Agilent	TG-17MS TG-17SilMS	3-038 3-039
	VF-1ms	Agilent	TG-1MS TR-1MS	3-023 3-061
	VF-200ms	Agilent	TG-200MS	3-041
	VF-23ms	Agilent	TR-FAME	3-074
	VF-35ms	Agilent	TG-35MS	3-030
	VF-5ht	Agilent	TG-5HT	3-029
	VF-5ms	Agilent	TG-5MS	3-025
	VF-Xms	Agilent	TG-XLBMS	3-024

Column	Phase	Manufacturer	Recommended Thermo Scientific Alternative(s)	Page
Capillary	ZB-1701	Phenomenex	TG-1701MS	3-037
	ZB-1701P	Phenomenex	TG-WaxMS	3-042
	ZB-1HT Inferno	Phenomenex	TR-SimDist	3-072
	ZB-1MS	Phenomenex	TG-1MS	3-023
	ZB-35	Phenomenex	TG-35MS	3-030
	ZB-5	Phenomenex	TR-5	3-062
	ZB-50	Phenomenex	TG-17MS	3-038
		1 Henomenex	TG-17SilMS	3-039
	ZB-5HT Inferno	Phenomenex	TG-5HT	3-029
	ZB-5MS	Phenomenex	TG-5MS	3-025
	ZB-5MS Si	Phenomenex	TG-5SilMS	3-028
	ZB-624	Phenomenex	TG-624 TG-624SiIMS	3-033 3-034
	ZB-FFAP	Phenomenex	TG-WaxMS A TR-FFAP	3-043 3-071
	ZB-Wax	Phenomenex	TG-WaxMS	3-042
	ZB-Waxplus	Phenomenex	TR-WaxMS	3-070
PLOT	Alumina-PLOT	Supelco	TG-BOND Alumina (Na ₂ SO ₄)	3-083
	AT-Alumina	Alltech	TG-BOND Alumina (Na ₂ SO ₄)	3-083
	AT-Molsieve	Alltech	TG-BOND Msieve 5A	3-084
	AT-Q	Alltech	TG-BOND Q	3-085
	CP-AI2O3/KCI	Agilent	TG-BOND Alumina (KCI)	3-083
	CP-AI2O3/Na ₂ SO ₄	Agilent	TG-BOND Alumina (Na ₂ SO ₄)	3-083
	CP-Molsieve 5A	Agilent	TG-BOND Msieve 5A	3-084
	CP-PoraPLOT Q	Agilent	TG-BOND Q	3-085
	CP-PoraPLOT S	Agilent	TG-BOND S	3-086
	CP-PoraPLOT U	Agilent	TR-BOND U	3-086
	GS-Alumina	Agilent	TG-BOND Alumina (Na₂SO₄)	3-083
	GS-Alumina KCI	Agilent	TG-BOND Alumina (KCI)	3-083
	GS-Molsieve	Agilent	TG-BOND Msieve 5A	3-084
	GS-Q	Agilent	TG-BOND O+	3-085
	HP PLOT M	Agilent	TG-BOND Alumina (Na₂SO₄)	3-083
	HP PLOT Molsieve	Agilent	TG-BOND Msieve 5A	3-084
	HP PLOT S	Agilent	TG-BOND Alumina (Na ₂ SO ₄)	3-083
	HP-UPLOT	Agilent	TG-BOND U	3-086
	PoraBond Q	Agilent	TG-BOND Q	3-085
	PoraBond U	Agilent	TG-BOND U	3-086
	Molsieve 5A PLOT	Supelco	TG-BOND Msieve 5A	3-084
	PLT-5A	Quadrex	TG-BOND Msieve 5A	3-084
	Rt-Alumina Bond (KCI)	Restek	TG-BOND Alumina (KCI)	3-083
	Rt-Alumina Bond (Na ₂ SO ₄)	Restek	TG-BOND Alumina (Na ₂ SO ₄)	3-083
	Rt-Msieve 5A	Restek	TG-BOND Msieve 5A	3-084
	Rt-Q-BOND	Restek	TG-BOND Q	3-085
	Rt-QS-BOND	Restek	TG-BOND Q+	3-085
	Rt-S-BOND	Restek	TG-BOND S	3-086
	Rt-U-BOND	Restek	TG-BOND U	3-086
	Supel-Q-PLOT	Supelco	TG-BOND Q	3-085

GC Column Selection by Application

Recommended Alternative	TG-1MS, TG-1MT, TR-1MS	TG-5MS, TG-5SIIMS, TG-5MS AMINE, TG-5MT, TR-5, TR-5MS	TG-35MS, TG-35MS AMINE, TR-35MS	TG-17MS, TG-17SilMS	TG-1301MS	TG-1701MS, TR-1701	TG-WaxMS, TG-WaxMT, TR-Wax, TR-WaxMS	H	TG-WaxMS B	TG-Dioxin	TG-POLAR	TG-624, TG-624SiIMS	TG-200MS	TG-225MS	TG-5HT, TR-5HT	TG-XLBMS	TG-VRX, TG-VMS	TG-0CP I, TG-0CP II	TG-0PP I, TG-0PP II	_	TR-FFAP	IR-V1	IR-FAIME	Th-Simalst	TP 626	TB-527	TB-8270	TP DAME	Th-Duda	TP Disdissel (M.)	IR-Biodiesei (IVI)	IR-Biodiesel (F)	TR-biodiesel (G)	Th-Dioxin Sivio	TR-Pesticide, IK-Pesticide II, TR-Pesticide III, TR-Pesticide IV	TR-PCB 8MS	TR-8095
Acids Acid/Neutral Drugs		•	•				•	•													•																
Alcohols					•						•	•									•																
Alcohols in Beverages																																					
					•							•										•															
Aldehydes							•	•	•		•										•																
Alditol Acetates (sugars)		•						•	•					•							•		•														
Amines – Aliphatic		•	•		•				•			•										•															
Amines – Aromatic			•		•				•			•							·····			•															
Antidepressants Benzenes, substituted			•												•																						
Biodiesel – Methanol	·· · ·····																																				
Biodiesel – FAMEs																																•					
Biodiesel – Glycerine																																	•				
Blood Alcohols				ļ				ļļ			•					ļ				•				ļ													
Brominated Flame Retardants		•		ļ	ļ											ļ										•	<u>.</u>									ļ	
Butter Fat		•													•																						
Carboxylic Acids								•																													
Cigarette Lighter Fuel		•			•							•										•															
Chlorinated Aromatics	•	•	•			•							•																						•		
Dioxins		•								•																							•				
Drugs of Abuse Drugs of Abuse – THC																														•							
Essential Oils							•	•													•																
Explosives										•																											•
FAMEs						•					•			•	•								•														
Glucose – Methylated										•									·····																		
										•					•																						
Herbicides		ļ		•		•		•	•		•		•					•			•														•		
Hydrocarbons																																					
Ketones					•	•		•	•		•	•	•								•	•															
Monomers					•							•										•															
Nitroaromatics		•	•	•		•	•	•	•		•										•																
Organic Acids								•																													
Organochlorine Pesticides	•	•	•	•		•							•					•																	•		
Organophosphorous Pesticides	•	•	•	•															•																•		
PAHs	•	•	•	•		•									•																						
Paraffins	•	•																																			
PCBs		•														•																				•	
Pesticides																•			·····								·								•		
Petroleum															•									•													
Phenols		•	•				•	•	•		•		•																								
Phthalates	•	•																			•																
Plant Sterols		•	•																																		
Polyethylene															•																						
Polymers	•																																				
Polywax		•													•																						
Pyrethroids Sedatives	•	•	•	•		•																													•		
Semivolatiles			•	· 																							•										
Silicon Oil				· 											•												+.	-									
Solvents					•		•	•	•		•										•																
							<u>-</u>														-																
Terpenes Triglycerides		•																																	•		
TRPH	•														•																						
Volatiles					•			•			•																										
												•					•				•	-			•												
Xylenes	•	•				Ш	•	•	•	Ш					Ш						•		- (

GC Column Selection by U.S. Pharmacopeia Specifications

The USP specifications are listed below with the appropriate Thermo Scientific GC column offerings included for your convenience. In some cases, there is more than one phase that matches the phase description. When in doubt, it is recommended that you consult the original complete method or contact our technical support team for additional information or help in choosing the correct column for your application.

USP Code	Description	Recommended Thermo Scientific Phase(s)	Page
G1	Dimethylpolysiloxane oil	TG-1MS	3-023
		TG-1MT	3-058
		TR-1MS	3-061
G2	Dimethylpolysiloxane gum	TG-1MS	3-023
		TG-1MT	3-058
		TR-1MS	3-061
G3	50% Phenyl-50% Methylpolysiloxane	TG-17MS	3-038
		TR-50MS	3-067
		TG-17SilMS	3-039
G5	3-Cyanopropylpolysiloxane	TR-FAME	3-074
G6	Trifluoropropyl Methylpolysiloxane	TG-200MS	3-041
G 7	50% Cyanopropyl Phenylmethyl Polysiloxane	TG-225MS	3-040
G16	Polyethylene Glycol Compound (ave. mol. wt. ~15,000)	TG-WaxMS	3-042
	with Diepoxide Linker	TG-WaxMT	3-060
		TR-WaxMS	3-070
		TR-Wax	3-069
G19	50% Cyanopropyl 50% Phenylmethyl Polysiloxane	TG-225MS	3-040
G20	Polyethylene Glycol (ave. mol. wt. of 380 – 420)	TG-WaxMS	3-042
		TG-WaxMT	3-060
		TR-WaxMS	3-070
		TR-Wax	3-069
G27	5% Phenyl-95% Methylpolysiloxane	TG-5MS	3-025
		TG-5MT	3-059
		TR-5MS	3-063
		TR-5	3-062
G36	1% Vinyl-5% Phenylmethylpolysiloxane	TR-5MS	3-063
		TR-5	3-062
G38	Phase G1 containing a small percentage of tailing inhibitor	TG-5MS	3-025
	Jan and Parasa and American	TG-5MT	3-059
		TR-5MS	3-063
		TR-5	3-062
G42	35% Phenyl-65% Dimethylpolysiloxane	TG-35MS	3-030
- 	(percentages refer to molar substitution)	TR-35MS	3-065
G43	6% Cyanopropylphenyl-94% Dimethylpolysiloxane	TG-624	3-033
	(percentages refer to molar substitution)	TR-V1	3-073
		TG-624SilMS	3-034
G46	14% Cyanopropylphenyl-86% Methylpolysiloxane	TG-1701MS	3-037
J.J	1170 Grandpropyrphonyr dd 70 Maethyrporyandxand	TR-1701	3-066
G48	90% Biscyanopropyl 10% Cyanopropyl Phenyl Polysiloxane	TG-POLAR	3-051

GC Column Selection by ASTM Method

Selected ASTM methods are listed below with the appropriate Thermo Scientific GC column offerings. In some cases, there is more than one phase or column dimension that can be used. When in doubt, it is recommended that you consult the original complete method or contact our technical support team for additional information or help in choosing the correct column for your application.

Method	Title	Recommended Thermo Scientific Phase(s)	Part Number	Page
D1983	Fatty acid methyl ester composition	TG-WaxMS	26088-1420	3-042
D2245	Oils and oil acids in solvent-reducible paints	TR-FAME	260M154P	3-074
D2268	High-purity n-heptane and isooctane	TG-1MS	Inquire	3-023
D2306	C8 aromatic hydrocarbons	TG-WaxMS	26088-1540	3-042
D2360	Trace impurities in monocyclic aromatic hydrocarbons	TG-WaxMS	26088-1550	3-042
D2456	Polyhydric alcohols in alkyd resin	TG-WaxMS	26088-2980	3-042
D2580	Phenols in water	TG-5MS	26098-2230	3-025
D2753	Oil and oil acids	TR-FAME	260M154P	3-074
D2800	FAME analysis	TR-FAME	260M154P	3-074
D2804	Purity of methyl ethyl ketone	TG-WaxMS	26088-2980	3-042
D2887	Boiling range distribution of petroleum fractions	TR-SimDist	260S348P	3-072
D2998	Polyhydric alcohols in alkyd resin	TG-1MS	26099-2970	3-023
D2999	Monopentaerythritol in commercial pentaerythritol	TG-1MS	Inquire	3-023
D3009	Composition of turpentine	TG-WaxMS	26088-2240	3-042
D3054	Cyclohexane	TG-1MS	Inquire	3-023
D3168	Polymers in emulsion paints	TG-1MS	26099-2970	3-023
D3257	Aromatics in mineral spirits	TG-624	26085-3960	3-033
D3271	Solvent analysis in paints	TG-WaxMS	26088-2980	3-042
D3304	PCBs in environmental materials	TG-5MS	26098-1540	3-025
D3304	1 CDS III EIIVIIOIIIIEIILAI IIIALEIIAIS	TR-PCB 8MS	26AJ148P	3-076
D3329	Purity of methyl isobutyl ketone	TG-WaxMS	26088-2980	3-042
		TG-624	26085-3960	3-033
D3432	Unreacted toluene diisocyanates in urethane prepolymers and coating solutions	TG-1MS	26099-3090	3-023
D3447	Purity of halogenated organic solvents	TG-624	26085-3960	3-033
D3452	Identification of rubber	TG-1MS	26099-3090	3-023
D3457	FAME analysis	TR-FAME	260M154P	3-074
D3534	PCBs in water	TG-5MS	26098-3360	3-025
		TR-PCB 8MS	26AJ148P	3-076
D3545	Alcohol content and purity of acetate esters	TG-624	26085-3960	3-033
D3687	Alcohol content and purity of acetate esters	TG-WaxMS	26088-2980	3-042
D3695	Volatile alcohols in water by direct aqueous-injection GC	TG-WaxMS	26088-2980	3-042
D3710	Boiling range distribution of gasoline and gasoline fractions	TR-SimDist	260S348P	3-072
D3725	Fatty acids in drying oils	TR-FAME	Inquire	3-074
D3760	Isopropylbenzene (cumene)	TG-WaxMS TG-1MS	26088-1550 Inquire	3-042 3-023
D3797	o-Xylene	TG-WaxMS	26088-2360	3-042
D3798	p-Xylene	TG-WaxMS	26088-2360	3-042
D3871	Purgeable organic compounds in water using headspace sampling	TG-624	26085-4080	3-033
D3893	Purity of methyl amyl ketone and methyl isoamyl ketone	TG-624	26085-3960	3-033
D3973	Low molecular weight halogenated hydrocarbons in water	TG-624	26085-3960	3-033
D4059	PCBs in insulating liquids	TG-5MS TR-PCB 8MS	26098-1540 26AJ148P	3-025 3-076
D4415	Dimer in acrylic acid	TG-WaxMS	26088-1430	3-042

Method	Title	Recommended Thermo Scientific Phase(s)	Part Number	Page
D4443	Residual vinyl chloride monomer content in ppb range in homo- and co-polymers by headspace GC	TG-624	26085-3960	3-033
D4735	Trace thiophene in refined benzene	TG-WaxMS	26088-2250	3-042
D4773	Propylene gycol monomethyl ether, dipropylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate	TR-5	260E470P	3-062
D4806	Denatured fuel ethanol for blending with gasoline for use as automotive spark-ignition engine fuel	TG-1MS	Inquire	3-023
D4864	Traces of methanol in propylene concentrates	TG-5MS	Inquire	3-025
D4947	Chlordane and heptachlor in indoor air	TG-5MS	26098-3360	3-025
D5060	Impurities in high-purity ethylbenzene	TG-WaxMS	26088-2360	3-042
D5075	Nicotine in indoor air	TG-5MS	26098-2970	3-025
D5134	Petroleum naphthas through n-nonane	TG-1MS	Inquire	3-023
D5135	Styrene	TG-WaxMS	26088-2360	3-042
D5399	Boiling point distribution of hydrocarbon solvents	TR-SimDist	260S348P	3-072
D5441	Methyl t-butyl ether	TG-1MS	Inquire	3-023
D5442	Petroleum waxes	TG-1MS TG-5MS	26099-1430 26098-1300	3-023 3-025
D5480	Motor oil volatility	TG-5MS	Inquire	3-025
D5501	Ethanol content of denatured fuel ethanol	TG-1MS	Inquire	3-023
D5599	Oxygenates in gasoline by oxygen selective FID	TG-1MS	26099-3080	3-023
D5623	Sulfur compounds in light petroleum liquids using sulfur selective detection	TG-1MS	Inquire	3-023
D5713	High purity benzene for cyclohexane feedstock	TG-1MS	Inquire	3-023
D5739	Oil spill source identification using positive ion electron impact low resolution MS	TG-5MS	26098-1420	3-025
D5769	Benzene, toluene and total aromatics in finished gasolines	TG-1MS TG-624 TG-624SilMS	26099-3080 26085-3330 26059-3330	3-023 3-033 3-034
D5790	Purgeable organic compounds in water	TG-5MS	26098-1420	3-025
D5812	Organochlorine pesticides in water	TG-1701MS TG-17MS TG-WaxMS	26090-1420 26089-1420 26088-1550	3-037 3-038 3-042
D5917	Trace impurities in monocyclic aromatic hydrocarbons	TR-FAME	260M154P	3-074
D5974	Fatty and rosin acids in tall oil fraction products	TG-1MS	Inquire	3-023
D5986	Oxygenates, benzene, toluene, C8-C12 aromatics and total aromatics in finished gasoline by GC/FTIR	TG-5MS	26098-1420	3-025
D6160	PCBs in waste materials	TR-SimDist	260S250P	3-072
D6352	Boiling range distribution of petroleum fractions	TG-1MS TR-SimDist	Inquire 260S250P	3-023 3-072
D6417	Engine oil volatility	TG-1MS	Inquire	3-023
D6584	Free and Total Glycerin in B-100 Biodiesel	TR-BioDiesel (G)	26AF024P	3-077
D6729	Individual components in spark ignition engine fuels	TG-1MS	Inquire	3-023
D6730	Individual components in spark ignition engine fuels using precolumn	TG-5MS TG-624	26098-2960 26085-4080	3-025 3-033
E202	Ethylene glycols and propylene glycols	TR-5	260E470P	3-062
E475	Di-tert-butyl peroxide	TG-1MS	Inquire	3-023
E1616	Acetic anhydride	TG-WaxMS	26088-3090	3-042
E1863	Acrylonitrile	TR-SimDist	260S250P	3-072

GC Column Selection by U.S. EPA Drinking Water Test Method

Selected EPA Drinking Water methods are listed below with the appropriate Thermo Scientific GC column offerings. In some cases, there is more than one phase or column dimension that can be used. When in doubt, it is recommended that you consult the original complete method or contact our technical support team for additional information or help in choosing the correct column for your application.

Method	Title	Recommended Thermo Scientific Phase(s)	Part Number	Page
501.3	Trihalomethanes	TG-624	26085-3960	3-033
502.1	Volatile halogenated compounds	TG-624 TR-5MS	26085-4080 260F396P	3-033 3-063
502.2	Volatile organic compounds	TG-624 TG-624	26085-4080 26085-3320	3-033 3-033
503.1	Volatile aromatic and unsaturated organics	TG-624 TR-5MS	26085-4080 260F396P	3-033 3-063
504	EDB and DBCP	TR-5MS TG-5MS	260F396P 26098-2240	3-063 3-025
504.1	EDB and DBCP	TR-5MS TG-5MS	260F396P 26098-2240	3-063 3-025
506	Phthalates and adipates	TG-1MS TG-5MS	26099-1430 26098-1430	3-023 3-025
507	Organonitrogen and organophosphorus pesticides	TG-5MS TG-5MT TG-17MS TG-17SilMS	26098-1420 26M98-1420 26089-1420 26072-1420	3-025 3-059 3-038 3-039
509	Ethylene thiourea	TG-1701MS TG-WaxMS	26090-1420 26088-1300	3-037 3-042
513	Dioxin	TG-5MS TG-5MT	26098-1540 26M98-1540	3-025 3-059
515.2	Chlorinated herbicides	TG-5MS TG-17MS	26098-1430 26089-1430	3-025 3-038
524.1	Volatile organic compounds	TR-524 TG-624 TG-624 TG-624SiIMS TG-624SiIMS	26RV495P 26085-4080 26085-3320 26059-4080 26059-3320	3-075 3-033 3-033 3-034 3-034
524.2	Volatile organic compounds	TR-524 TG-624 TG-624	26RV495P 26085-4080 26085-3320	3-075 3-033 3-033
525.1	Semi-volatile organic compounds	TR-525 TG-5MS TG-624SiIMS TG-624SiIMS	26RX142P 26098-1420 26059-4080 26059-3320	3-075 3-025 3-034 3-034
525.2	Semi-volatile organic compounds	TR-525 TG-5MS	26RX142P 26098-1420	3-075 3-025
527	Selected pesticides and flame retardants	TR-527 TG-5MS	26RF142P 26098-1420	3-075 3-025
548.1	Endothall	TG-1MS TG-5MS	26099-1430 26098-1420	3-023 3-025
551	Chlorinated disinfection by-products/chlorinated solvents	TG-5MS TG-1701MS	26098-1420 26090-2240	3-025 3-037
552	Haloacetic acids	TG-1701MS TG-35MS	26090-1430 26094-1430	3-037 3-030
552.1	Haloacetic acids and dalapon	TG-1701MS TG-35MS	26090-1430 26094-1430	3-037 3-030

GC Column Selection by U.S. EPA Waste Water Test Method

Selected EPA Waste Water methods are listed below with the appropriate Thermo Scientific GC column offerings. In some cases, there is more than one phase or column dimension that can be used. When in doubt, it is recommended that you consult the original complete method or contact our technical support team for additional information or help in choosing the correct column for your application.

Method	Title	Recommended Thermo Scientific Phase(s)	Part Number	Page
601	Purgeable halocarbons	TG-624 TG-624	26085-4080 26085-3320	3-033 3-033
602	Purgeable aromatics	TG-624 TG-5MS TG-5MT	26085-4080 26098-2960 26M98-2960	3-033 3-025 3-059
603	Acrolein and acrylonitrile	TG-624 TG-5MS TG-5MT	26085-4080 26098-2960 26M98-2960	3-033 3-025 3-059
504	Phenols	TG-5MS TG-5MT TG-35MS	26098-1420 26M98-1420 26094-1420	3-025 3-059 3-030
606	Phthalate ester	TG-5MS TG-5MT TG-35MS	26098-1420 26M98-1420 26094-1420	3-025 3-059 3-030
607	Nitrosamines	TG-5MS TG-5MT TG-35MS	26098-1420 26M98-1420 26094-1420	3-025 3-059 3-030
608.1	Organochlorine pesticides in industrial and municipal water	TG-5MS	26098-2240	3-025
608.2	Organochlorine pesticides in wastewater	TG-5MS	26098-2240	3-025
609	Nitroaromatics and isophorone	TG-5MS TG-35MS	26098-1430 26094-1430	3-025 3-030
610	Polynuclear aromatic hydrocarbons	TG-5MS TG-5MT	26098-1420 26M98-1420	3-025 3-059
611	Haloethers	TG-5MS TG-35MS	26098-1430 26094-1430	3-025 3-030
612	Chlorinated hydrocarbons	TG-5MS TG-35MS	26098-1430 26094-1430	3-025 3-030
613	Dioxin	TG-5MS TG-5MT	26098-1540 26M98-1540	3-025 3-059
614	Organophosphorous pesticides in industrial and municipal water	TG-5MS TG-5MT TG-17MS TG-17SilMS	26098-1420 26M98-1420 26089-1420 26072-1420	3-025 3-059 3-038 3-039
614.1	Organophosphorous pesticides in wastewater	TG-5MS TG-5MT TG-17MS	26098-1420 26M98-1420 26089-1420	3-025 3-059 3-038
615	Chlorinated herbicides in industrial and municipal water	TG-5MS TG-5MT TG-17MS	26098-1420 26M98-1420 26089-1420	3-025 3-059 3-038
616	C, H, and O compounds	TG-1MS TG-5MS TG-5MT	26099-1420 26098-1420 26M98-1420	3-023 3-025 3-059
617	Organohalide pesticides and PCBs in industrial and municipal water	TG-5MS TG-5MT	26098-1420 26M98-1420	3-025 3-059
618	Volatile pesticides in industrial and municipal water	TG-1MS TG-5MS	26099-2240 26098-2240	3-023 3-025
619	Triazines, pesticides and PCBs in industrial and municipal water	TG-35MS	26094-1430	3-030
620	Diphenylamine in industrial and municipal water	TG-1MS TG-5MS	26099-1430 26098-1430	3-023 3-025
622	Organophosphorous pesticides in industrial and municipal water	TG-5MS TG-5MT TG-17MS	26098-1420 26M98-1420 26089-1420	3-025 3-059 3-038

GC Column Selection by U.S. EPA Waste Water Test Method continued

Method	Title	Recommended Thermo Scientific Phase(s)	Part Number	Page
622.1	Thiophosphate pesticides	TG-5MS TG-5MT TG-35MS	26098-1420 26M98-1420 26094-1420	3-025 3-059 3-030
624	Purgeables	TG-624 TG-624 TG-624SiIMS TG-624SiIMS	26085-4080 26085-3320 26059-4080 26059-3320	3-033 3-033 3-034 3-034
625	Base/neutrals and acids	TG-5MS TG-5MT TG-5MS	26098-1420 26M98-1420 26098-1430	3-025 3-059 3-025
627	Dinitroaniline pesticides in industrial and municipal water	TG-5MS TG-35MS	26098-1430 26094-1430	3-025 3-030
630.1	Dithiocarbamate pesticides such as carbon disulfide	TG-5MS TG-5MS TG-5MT	26098-1420 26098-1430 26M98-1420	3-025 3-025 3-059
633	Organonitrogen pesticides	TG-5MS TG-5MT TG-17MS TG-17SilMS	26098-1420 26M98-1420 26089-1420 26072-1420	3-025 3-059 3-038 3-039
633.1	Neutral nitrogen-containing pesticides	TG-5MS TG-5MT TG-35MS	26098-1420 26M98-1420 26094-1420	3-025 3-059 3-030
634	Thiocarbamate pesticides	TG-5MS TG-5MT TG-35MS	26098-1420 26M98-1420 26094-1420	3-025 3-059 3-030
645	Amine pesticides and lethane in industrial and municipal water	TG-5MS TG-5MT TG-35MS	26098-1420 26M98-1420 26094-1420	3-025 3-059 3-030
646	Dinitro aromatic pesticides	TG-5MS TG-5MT TG-35MS	26098-1420 26M98-1420 26094-1420	3-025 3-059 3-030

GC Column Selection by U.S. EPA Solid Waste Test Method

Selected EPA Solid Waste methods are listed below with the appropriate Thermo Scientific GC column offerings. In some cases, there is more than one phase or column dimension that can be used. When in doubt, it is recommended that you consult the original complete method or contact our technical support team for additional information or help in choosing the correct column for your application.

Method	Title	Recommended Thermo Scientific Phase(s)	Part Number	Page
8010B	Halogenated volatile organics	TG-624 TG-624	26085-4080 26085-3320	3-033 3-033
8011	EDB and DBCP	TG-5MS TG-5MT	26098-1420 26M98-1420	3-025 3-059
8015B	Non-halogenated volatile organics	TG-624 TG-5MS TG-5MT	26085-4080 26098-2960 26M98-2960	3-033 3-025 3-059
8020A	Aromatic volatile organics	TG-624 TG-5MS TG-5MT	26085-4080 26098-2960 26M98-2960	3-033 3-025 3-059
8021A	Halogenated and aromatic volatile organics	TG-624 TG-5MS TG-5MT	26085-4080 26098-2960 26M98-2960	3-033 3-025 3-059
8030A	Acrolein and acrylonitrile	TG-624	26085-4080	3-033
8031	Acrylonitrile	TG-624	26085-3390	3-033
8032	Acrylamide	TG-624	26085-3390	3-033

Method	Title	Recommended Thermo Scientific Phase(s)	Part Number	Page
8040A	Phenols	TG-5MS TG-5MT TG-35MS	26098-1420 26M98-1420 26094-1420	3-025 3-059 3-030
8060	Phthalate esters	TG-5MS TG-5MT	26098-1420 26M98-1420	3-025 3-059
8061	Phthalate esters	TG-5MS TG-5MT	26098-1420 26M98-1420	3-025 3-059
8070	Nitrosamines	TG-5MS	26098-1430	3-025
8081	Organochlorine pesticides and PCBs	TG-5MS TG-5MT TG-17MS TG-17SiIMS	26098-2230 26M98-2230 26089-1420 26072-1420	3-025 3-059 3-038 3-039
8090	Nitroaromatics and cyclic ketones	TG-5MS	26098-1430	3-025
8095	Explosives	TR-8095	260P123P	3-075
8100	Polynuclear aromatic hydrocarbons	TG-5MS TG-5MT	26098-1420 26M98-1420	3-025 3-059
8110	Haloethers	TG-5MS TG-5MT	26098-1420 26M98-1420	3-025 3-059
8120A	Chlorinated hydrocarbons	TG-5MS	26098-1430	3-025
8121	Chlorinated hydrocarbons	TG-5MS	26098-1430	3-025
8140	Organophosphorous pesticides	TG-5MS TG-5MT TG-17MS	26098-1420 26M98-1420 26089-1420	3-025 3-059 3-038
8141A	Organophosphorous pesticides	TG-5MS TG-5MT TG-17MS	26098-1420 26M98-1420 26089-1420	3-025 3-059 3-038
8150B	Chlorinated herbicides	TG-5MS TG-5MT TG-17MS	26098-1420 26M98-1420 26089-1420	3-025 3-059 3-038
8151	Chlorinated herbicides	TG-5MS TG-5MT TG-17MS	26098-1420 26M98-1420 26089-1420	3-025 3-059 3-038
8240B	Volatile organic compounds	TG-624 TG-624 TG-624SiIMS TG-624SiIMS	26085-4080 26085-3320 26059-4080 26059-3320	3-033 3-033 3-034 3-034
8250A	Semi-volatile organic compounds	TG-5MS TG-5MS TG-5MT	26098-1420 26098-1430 26M98-1420	3-025 3-025 3-059
8260A	Volatile organic compounds	TG-624 TG-624	26085-4080 26085-3320	3-033 3-033
8270B	Semi-volatile organic compounds	TG-5MS TG-5MS TG-5MT	26098-1420 26098-1430 26M98-1420	3-025 3-025 3-059
8270C	Semi-volatile organic compounds	TR-8270	26RF296P	3-075
8280	Polychlorinated dioxins and furans	TG-5MS TG-5MT	26098-1540 26M98-1540	3-025 3-059
8290	Polychlorinated dioxins and furans	TG-5MS TG-5MT	26098-1540 26M98-1540	3-025 3-059

GC Column Selection by NIOSH Method

Selected NIOSH methods are listed below with the recommended Thermo Scientific GC column offerings included for your convenience.

There may be more than one phase or column dimension that can be used. When in doubt, it is recommended that you consult the original complete method or contact our technical support team for additional information or help in choosing the correct column for your application.

Method	Title	Recommended Thermo Scientific Phase(s)	Part Number	Page
801	Aerobic bacteria	TR-FAME	Inquire	3-074
1001	Methylene chloride	TG-1MS	26099-1430	3-023
1002	Chloroprene	TG-1MS	26099-2960	3-023
1002	Gilloroprene 	TG-1MT	26M99-2960	3-058
1003	Halogenated hydrocarbons	TG-624	26085-3390	3-033
		TG-624SilMS	26059-3390	3-034
1004	Dichloroethyl ether	TG-1MS	Inquire	3-023
1005	Methylene chloride	TG-WaxMS	26088-1430	3-042
1010	Epichlorohydrin	TG-WaxMS	Inquire	3-042
1011	Ethyl bromide	TG-WaxMS	26088-2240	3-042
1013	Propylene dichloride	TG-WaxMS	Inquire	3-042
1015	Vinylidene chloride	TG-624	Inquire	3-033
1016	1,1,2,2-Tetrachloro-2,2-difluoroethane and 1,1,2,2-tetrachloro-1,2-difluoroethane	TG-WaxMS	26088-2240	3-042
1018	Dichlorodifuoromethane, 1,2-dichlorotetrafluoroethane and chlorodifluoromethane	TG-1MS	26099-2970	3-023
1020	1,1,2-Trichloro-1,2,2-trifluoroethane	TG-WaxMS	26088-1430	3-042
1300	Ketones 1	TG-WaxMS	26088-2240	3-042
1301	Ketones 2	TG-WaxMS	26088-2240	3-042
1302	N-Methyl-2-pyrrolidone	TG-5MS	26098-2970	3-025
1400	Alcohols 1	TG-WaxMS	26088-2240	3-042
1401	Alcohols 2	TG-WaxMS	26088-2240	3-042
1402	Alcohols 3	TG-WaxMS	26088-2240	3-042
1403	Alcohols 4	TG-WaxMS	26088-1430	3-042
1450	Esters 1	TG-WaxMS	26088-2240	3-042
1451	Methyl cellosolve acetate	TG-5MS	26098-2970	3-025
1453	Vinyl acetate	TG-5MS	26098-2970	3-025
1454	Isopropyl acetate	TG-1MS	26099-2970	3-023
1457	Ethyl acetate	TG-WaxMS	26088-2970	3-042
1458	Methyl acetate	TG-WaxMS	26088-2970	3-042
1501	Aromatic hydrocarbons	TG-WaxMS	26088-2970	3-042
1550	Naphthas	TG-1MS	26099-1540	3-023
		TG-1MT	26M99-1540	3-058
1551	Turpentine	TG-1MS	26099-1540	3-023
	'	TG-1MT	26M99-1540	3-058
1552	Terpenes	TG-WaxMS	26088-3100	3-042
1601	1,1-Dichloro-1-nitroethane	TG-1MS	Inquire	3-023
1602	Dioxane	TG-5MS	26098-2970	3-025
1604	Acrylonitrile	TG-WaxMS	26088-2240	3-042
1606	Acetonitrile	TG-WaxMS	26088-2970	3-042
1608	Glycidol	TG-WaxMS	Inquire	3-042
1609	Tetrahydrofuran	TG-WaxMS	26088-2240	3-042
1610	Ethyl ether	TG-1MS	26099-2970	3-023
1611	Methylal	TG-WaxMS	Inquire	3-042
1612	Propylene oxide	TG-5MS	26098-2970	3-025
1613	Pyridine	TG-5SilMS	26096-2970	3-028
1614	Ethylene oxide	TG-WaxMS	Inquire	3-042
1615	Methyl-tert-butyl ether	TG-1MS	26099-2240	3-023
2000	Methanol	TG-35MS	26094-2980	3-030 3-042
2000	Methanol Dimethylacetylamide and dimethylformamide	TG-Y5MS TG-WaxMS	26094-2980 26088-2240	.

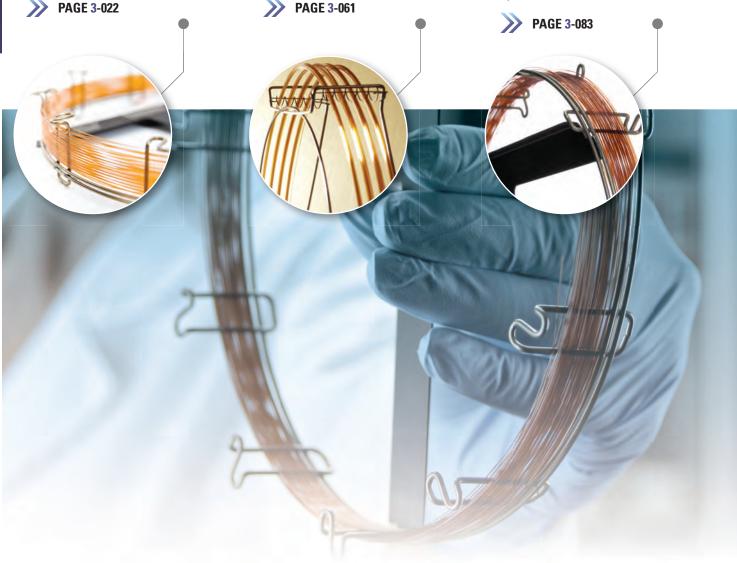
Method	Title	Recommended Thermo Scientific Phase(s)	Part Number	Page
2005	Nitroaromatics	TG-5MS	26098-2250	3-025
		TG-5MT	26M98-2250	3-059
2007	Aminoethanol compounds 1	TG-5MS	Inquire	3-025
2010	Aliphatic amines	TG-5MS TG-5MT	26098-1420 26M98-1420	3-025 3-059
2012	n-Butylamine	TG-5MS TG-5MT	26098-1420 26M98-1420	3-025 3-059
2017	Aniline, o-toluidine and nitrobenzene	TG-5MS	26098-2970	3-025
2500	Methyl ethyl ketone	TG-1MS	26099-2970	3-023
2505	Furfuryl alcohol	TG-1MS TG-1MT	26099-1420 26M99-1420	3-023 3-058
2520	Methyl bromide	TG-1MS	26099-2970	3-023
2529	Furfural	TG-5MS	26098-2960	3-025
_ J_J_		TG-5MT	26M98-2960	3-059
2536	Valeraldehyde	TG-5MS	26098-1310	3 -025
2537	Methyl methacrylate	TG-35MS	26094-2980	3-030
2541	Formaldehyde	TG-WaxMS	26088-2240	3-042
2542	Mercaptans	TG-1MS TG-1MT	26099-2960 26M99-2960	3-023 3-058
2546	Cresols and phenol	TG-WaxMS	26088-1430	3-042
2549	Volatile organic compounds (screening)	TG-1MS TG-1MT	26099-2960 26 M 99-2960	3-023 3-058
2550	Benzothiazole in asphalt fume	TG-1MS	26099-2970	3-023
2551	Nicotine	TG-5MS	26098-2970	3-025
3511	Monomethylaniline	TG-5MS TG-5MT	26098-1420 26M98-1420	3-025 3-059
3513	Tetranitromethane	TG-1MS TG-1MT	26099-1420 26 M 99-1420	3-023 3-058
5020	Dibutyl phthalate and di(2-ethylhexyl) phthalate	TG-1MS TG-1MT	26099-1300 26M99-1300	3-023 3-058
5515	Polynuclear aromatic hydrocarbons	TG-1MS	26099-3090	3-023
5519	Endrin	TG-1MS	26099-3090	3-023
5523	Glycols	TG-35MS	26094-2980	3-030
5600	Organophosphorus pesticides	TG-5MS	26098-2970	3-025
5602	Chlorinated organonitrogen herbicides (air sampling)	TG-17MS TG-17SilMS	26089-1420 26072-1420	3-038 3-039
5701	Resorcinol	TG-1MS TG-1MT	26099-1420 26 M 99-1420	3-023 3-058
9200	Chlorinated organonitrogen herbicides (hand wash)	TG-17MS TG-17SilMS	26089-1420 26072-1420	3-038 3-039
9201	Chlorinated organonitrogen herbicides (dermal patch)	TG-17MS TG-17SilMS	26089-1420 26072-1420	3-038 3-039

Thermo Scientific GC Columns

Thermo Scientific GC columns offer high temperature stability and exhibit low bleed and long lifetimes. Whatever the application, TraceGOLD, TRACE and TracePLOT columns provide excellent quality and performance, with guaranteed reproducibility.

TraceGOLD GC Columns

Offering you a leap forward in column performance delivering low bleed and superior inertness


TRACE GC Columns

Offering excellent quality and reproducibility for a wide range of GC applications

TracePLOT GC Columns

The latest innovation in PLOT column technology, providing reproducible analyses of permanent gases, hydrocarbons and solvents

GC Capillary Columns

A leap forward in column performance

- Low bleed even at elevated temperatures
- Outstanding robustness for difficult separations
- Reliable and reproducible performance
- Complete range of GC consumables for all instruments

The heart of any gas chromatograph is the column. We have used the knowledge gained from more than 30 years of HPLC column production and 50 years in GC and GC/MS instrument manufacturing to offer a range of columns and consumables that are unsurpassed in the most important aspects of their performance.

Low Bleed

Bleeding phases cause problems including low sensitivity, detector contamination, lower temperature limits and short lifetimes. All manufacturers have at some time claimed their columns have the lowest bleed, but use supporting chromatograms that lack reproducible scale information or methodology. By quantifying the amount of phase bleeding from the column, we can show that the Thermo Scientific TraceGOLD column range has less than half the bleed of other popular columns.

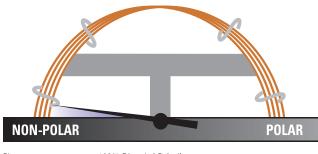
Robustness

Moisture and oxygen pose a danger to GC columns. Oxygen contamination can come from many sources, leading to shortened lifetimes, increased bleed and increased cost. Thermo Scientific GC columns have been manufactured with improved phase bonding to minimize the risk of damage due to contaminated carrier gas or difficult samples.

Reproducibility

As well as focusing on individual column performance, we work to improve column-to-column reproducibility, arising from major improvements in the production processes.

Guaranteed Performance


All Thermo Scientific columns have passed rigorous testing procedures to ensure the highest possible performance and are delivered with a serialized certificate to show their performance and assist with traceability. All Thermo Scientific columns come with a 100% guarantee. If for any reason the column does not perform up to our claims, we will replace it with one that does.

Technical Support

Our quality technical support will help you solve your problems quickly. Please refer to the GC Column Selection Guide on page 3-002 for information to help you select the appropriate column for your separation. If you are looking for a column for a NIOSH, ASTM or EPA method, Thermo Scientific column recommendations are given on pages 3-012 to 3-019. Should you need assistance with column selection or method development, please contact one of our technical support desks and our highly trained team of scientists will be able to help.

Quick Reference Icon

The reference graphic (below) on each column page gives easy access to the specifications of each phase type. It gives a relative measure of polarity, its chemistry and its maximum temperature limits as well as its USP classification.

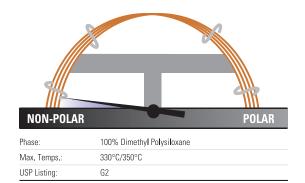
Phase:	100% Dimethyl Polysiloxane
Max. Temps.:	330°C/350°C
USP Listing:	G2

Thermo Scientific TraceGOLD GC Columns

TraceGOLD GC columns offer you a leap forward in column performance delivering low bleed and superior inertness ideally suited to MS applications.

View product information and application notes

Quick Reference


TG-1MS	TG-17SilMS	. 3-039
TG-XLBMS	TG-225MS	. 3-040
TG-5MS	TG-200MS	. 3-041
TG-SQC 3-026	TG-WaxMS	3-042
TG-5MS AMINE 3-027	TG-WaxMS A	3-043
TG-5SilMS	TG-WaxMS B	3-044
TG-5HT 3-029	SafeGuard	3-045
TG-35MS	TG-Dioxin	. 3-047
TG-35MS AMINE 3-031	TG-OCP I / TG OCP II	3-048
TG-1301MS	TG-OPP I / TG-OPP II	3-049
TG-624	TG-ALC Plus I / TG-ALC Plus II	. 3-050
TG-624SiIMS 3-034	TG-POLAR	. 3-051
TG-VRX 3-035	Fast GC	. 3-052
TG-VMS	TG-1MT Metal	. 3-058
TG-1701MS	TG-5MT Metal	. 3-059
TG-17MS 3-038	TG-WaxMT Metal	3-060

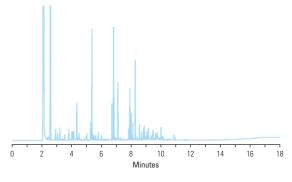
TraceGOLD TG-1MS GC Columns

Exceptionally low bleed for optimal signal-to-noise ratio, sensitivity and MS integrity

- Non-polar, 100% Methylpolysiloxane
- Equivalent to USP G2

TraceGOLD TG-1MS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.1	10	0.1	26099-0200	1 Each
0.2	12	0.33	26099-5820	1 Each
0.25	15	0.25	26099-1300	1 Each
		0.5	26099-2110	1 Each
		1.0	26099-2840	1 Each
	30	0.25	26099-1420	1 Each
		0.5	26099-2230	1 Each
		1.0	26099-2960	1 Each
	60	0.25	26099-1540	1 Each
		0.5	26099-2350	1 Each
		1.0	26099-3080	1 Each
0.32	15	0.25	26099-1310	1 Each
		1.0	26099-2850	1 Each
		3.0	26099-3500	1 Each
	30	0.25	26099-1430	1 Each
		0.5	26099-2240	1 Each
		1.0	26099-2970	1 Each
		3.0	26099-4840	1 Each
	60	0.25	26099-1550	1 Each
		0.5	26099-2360	1 Each
		1.0	26099-3090	1 Each
0.53	15	0.5	26099-2130	1 Each
		1.0	26099-2860	1 Each
		1.5	26099-3340	1 Each
	30	0.5	26099-2250	1 Each
		1.0	26099-2980	1 Each
		1.5	26099-3360	1 Each

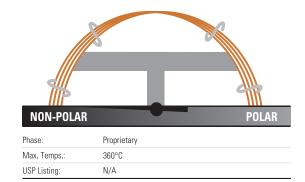

Applications:

- Hydrocarbons
- PCBs
- Drugs of abuse
- Gasoline range organics (GRO)
- Refinery gases
- Essential oils
- Pesticides

Similar to:

- Rxi-1ms
- DB-1
- DB-1ms
- HP-1
- HP-1ms
- Ultra-1
- SPB-1
- Equity-1
- VF-1ms
- CP-Sil 5 CB Low Bleed/MS

Unleaded gasoline


Column: TG-1MS 30m x 0.25mm x 0.25 μ m

Part Number:	26099-1420
Temperature:	50°C (2.0 minute hold) to 75°C at 10°C/minute to 300°C at 20°C/minute (5 minute hold)
Detector Type:	FID
Carrier Gas:	He
Flow Rate:	1.0mL/min
Injection Volume:	1.0µL
Injection Mode:	Split (20:1), 250°C

TraceGOLD TG-XLBMS GC Columns

General purpose columns exhibiting extremely low bleed

- Low polarity phase, proprietary
- Low bleed for excellent signal-to-noise ratio, sensitivity and mass spectral integrity
- Ideal for analysis of active, high molecular weight compounds with sensitive GC-MS systems

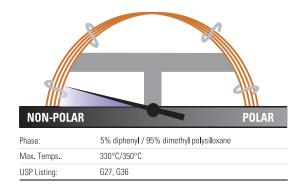
TraceGOLD TG-XLBMS GC Columns

IraceGULD	I G-YFRIAI2 GC CO	IUMNS		
ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.10	10	0.1	26079-0200	1 Each
0.18	20	0.18	26079-5780	1 Each
0.25	15	0.1	26079-0350	1 Each
		0.25	26079-1300	1 Each
		1.0	26079-2840	1 Each
	30	0.1	26079-0470	1 Each
		0.25	26079-1420	1 Each
		0.5	26079-2230	1 Each
		1.0	26079-2960	1 Each
	60	0.25	26079-1540	1 Each
0.32	15	0.25	26079-1310	1 Each
	30	0.1	26079-0480	1 Each
		0.25	26079-1430	1 Each
		0.5	26079-2240	1 Each
		1.0	26079-2970	1 Each
	60	0.25	26079-1550	1 Each
0.53	15	1.5	26079-3340	1 Each
	30	0.5	26079-2250	1 Each
		1.5	26079-3360	1 Each

Semi-Volatile Drinking Water Application Kit

3		
Description	Cat. No.	Quantity
Semi-Volatile Drinking Water Application Kit	60181-736	1 Each
Containing the following:		
TraceGOLD TG-XLBMS GC Column 30m x 0.25mm x 0.25µm	26079-1420	1 Each
BTO Septa 17mm Diameter	31303211	50 Pack
S/SL Injector — Split/Splitless Liner, 5mm ID x 8mm OD x 105mm Length	45350033	5 Pack
S/SL Injector – Silver Seals	29033629	10 Pack
S/SL Injector — Graphite Liner Seals	29033406	10 Pack
S/SL Injector — Graphite Ferrules for 0.25mm ID Column	29053488	10 Pack
MS Interface — Graphite/Vespel Ferrules for 0.25mm ID Column	29033496	10 Pack
2mL Screw Top Vials, Amber Glass	60180-567	100 Pack
Blue Caps With PTFE/Red Rubber Seals	60180-569	100 Pack
5μL Fixed Needle Syringe, 50mm Length, 26 Gauge, Cone Needle	36500505	1 Each

Applications


- Pesticides
- PCB congeners
- PAHs
- Aroclor mixes

- Rxi-XLB
- DB-XLB
- VF-Xms

TraceGOLD TG-5MS GC Columns

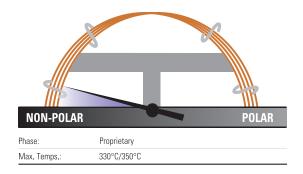
The most widely used MS phase in gas chromatography

- Low polarity phase, 5% Phenyl Methylpolysiloxane
- Low bleed for excellent signal-to-noise ratio, sensitivity and mass spectral integrity
- Exceptional inertness ideal for analysis of active compounds
- Equivalent to USP G27 phase

TraceGOLD TG-5MS GC Columns

ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.1	10	0.1	26098-0200	1 Each
0.2	12	0.33	26098-5820	1 Each
0.18	20	0.18	26098-5780	1 Each
0.25	10	0.25	26098-1180	1 Each
	15	0.25	26098-1300	1 Each
		0.5	26098-2110	1 Each
		1.0	26098-2840	1 Each
	30	0.25	26098-1420	1 Each
		0.5	26098-2230	1 Each
		1.0	26098-2960	1 Each
	60	0.25	26098-1540	1 Each
		0.5	26098-2350	1 Each
		1.0	26098-3080	1 Each
0.32	15	0.25	26098-1310	1 Each
		1.0	26098-2850	1 Each
	30	0.25	26098-1430	1 Each
		0.5	26098-2240	1 Each
		1.0	26098-2970	1 Each
	60	0.25	26098-1550	1 Each
		0.5	26098-2360	1 Each
		1.0	26098-3090	1 Each
0.53	15	0.25	26098-1320	1 Each
		0.5	26098-2130	1 Each
		1.0	26098-2860	1 Each
		1.5	26098-3340	1 Each
	30	0.25	26098-1440	1 Each
		0.5	26098-2250	1 Each
		1.0	26098-2980	1 Each
		1.5	26098-3360	1 Each
	60	5.0	26098-4100	1 Each

Applications:


- · Semi-volatiles
- Phenols
- Amines
- Residual solvents and solvent impurities
- Drugs of abuse
- Pesticides
- PCB cogeners
- Aroclor mixes

- Rxi-5ms
- DB-5
- HP-5
- HP-5ms
- Ultra-2
- SPB-5
- Equity-5
- CP-Sil 8

TraceGOLD TG-SQC GC Columns

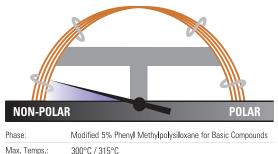
Ensure the quality of a Thermo Scientific instrument when installed on site

- Optimized for system qualification tests for new GC-MS installations or during service/maintenance of an existing instrument
- We recommend reserving this column for benchmark testing only

TraceGold TG-SQC GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	15	0.25	26070-1300	1 Each
	30	0.25	26070-1420	1 Each

Applications:


• System Qualification Tests (Thermo Scientific GC-MS)

TraceGOLD TG-5MS AMINE GC Columns

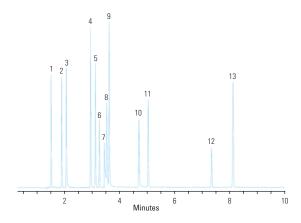
Analysis of ppm levels of amines without column priming

- Low polarity phase, base optimized 5% phenyl methylpolysiloxane
- Tubing surface is chemically altered to reduce tailing of active basic compounds
- Also allows analysis of neutral or weakly acidic compounds (e.g., phenols) and compounds susceptible to hydrogen bonding
- Low bleed at maximum operating temperature

Phase:	Modified 5% Phenyl Methylpolysiloxane for Basic Compounds
Max. Temps.:	300°C / 315°C
USP Listing:	N/A

TraceGOLD TG-5MS AMINE GC Columns

ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.25	15	0.25	26097-1300	1 Each
		0.5	26097-2110	1 Each
		1.0	26097-2840	1 Each
	30	0.25	26097-1420	1 Each
		0.5	26097-2230	1 Each
		1.0	26097-2960	1 Each
0.32	15	1.0	26097-2850	1 Each
	30	1.0	26097-2970	1 Each
0.53	15	1.0	26097-2860	1 Each
		3.0	26097-3840	1 Each
	30	1.0	26097-2980	1 Each
		3.0	26097-3960	1 Each


Applications:

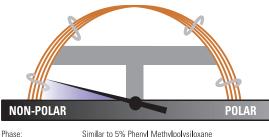
- · Amines and other basic compounds, including alkylamines, diamines, triamines, ethanolamines
- Nitrogen-containing heterocyclics

Similar to:

• Rtx-5 Amine

Amines and phenols

Column: TG-5MS Amine 30m x 0.32mm x 1.0µm 2007 2070


raitivuilibei.	20037-2370
Temperature:	120°C to 220°C at 10°C/minute
Detector Type:	FID
Carrier Gas:	Hydrogen
Flow Rate:	40cm/min
Injection Volume:	1.0µL
Injection Mode:	Split 25:1, 300°C

- 1. diethylamine 8. octylamine 2. pyridine 9. 1-methyl-2-pyrrolidone 3. morpholine 10. 2-nitrophenol
- 4. phenol 11. 2,6-dimethylaniline 5. aniline 12. nicotine 13. 2-nitroaniline
- 6. 2-chlorophenol 7. diethylenetriamine

TraceGOLD TG-5SilMS GC Columns

Incorporate phenyl groups in the polymer backbone for improved thermal stability, reduced bleed and reduced susceptibility to oxidation

- Low polarity, silarylene phase with selectivity comparable to 5% phenyl methylpolysiloxane
- Designed for low bleed and outstanding inertness

Phase:	Similar to 5% Phenyl Methylpolysiloxane
Max. Temps.:	330°C/350°C
USP Listing:	G27, G36

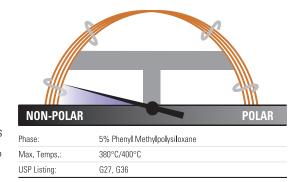
TraceGOLD TG-5SiIMS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.1	10	0.1	26096-0200	1 Each
0.18	20	0.18	26096-5780	1 Each
0.2	12	0.33	26096-5820	1 Each
0.25	15	0.25	26096-1300	1 Each
		0.5	26096-2110	1 Each
		1.0	26096-2840	1 Each
	30	0.25	26096-1420	1 Each
		0.5	26096-2230	1 Each
		1.0	26096-2960	1 Each
	60	0.25	26096-1540	1 Each
		1.0	26096-3080	1 Each
0.32	15	0.25	26096-1310	1 Each
	30	0.25	26096-1430	1 Each
		0.5	26096-2240	1 Each
		1.0	26096-2970	1 Each
0.53	30	1.5	26096-3360	1 Each

Semi-Volatile Waste / Wastewater Application Kit

	Description	Cat. No.	Quantity
	Semi-Volatile Waste / Wastewater Application Kit	60181-735	1 Each
	Containing the following:		
	TraceGOLD TG-5SilMS GC Column 30m x 0.25mm x 0.50µm	26096-2230	1 Each
Ì	BTO Septa 17mm Diameter	31303211	50 Pack
•	S/SL Injector — Split/Splitless Liner, 5mm ID x 8mm OD x 105mm Length	45350033	5 Pack
•	S/SL Injector — Silver Seals	29033629	10 Pack
i	S/SL Injector — Graphite Liner Seals	29033406	10 Pack
	S/SL Injector — Graphite Ferrules for 0.25mm ID Column	29053488	10 Pack
i	MS Interface — Graphite/Vespel Ferrules for 0.25mm ID Column	29033496	10 Pack
•	2mL Screw Top Vials, Amber Glass	60180-567	100 Pack
	Blue Caps With PTFE/Red Rubber Seals	60180-569	100 Pack
i	5μL Fixed Needle Syringe, 50mm Length, 26 Gauge, Cone Needle	36500505	1 Each

Applications:


- GC-MS applications using ion-trap systems
- Polycyclic aromatics
- Hydrocarbons including chlorinated hydrocarbons
- Phthalates
- Phenols
- Amines
- Organophosphate

- DB-5MS
- VF-5ms
- CP-Sil 8 Low-Bleed/MS
- Rxi-5SiIMS
- BPX5
- ZB-5ms
- Optima-5MS
- SLB-5

TraceGOLD TG-5HT GC Columns

Offers extended operation up to 400°C, ideal for high temperature extended GC applications

- Low polarity, 5% phenyl methylpolysiloxane phase
- Lower bleed and better inertness than comparable high-temperature columns
- Special design of fused silica tubing extends column lifetime by up to 40%

TraceGOLD TG-5HT GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	15	0.1	26095-0350	1 Each
		0.25	26095-1300	1 Each
	30	0.1	26095-0470	1 Each
		0.25	26095-1420	1 Each
0.32	15	0.1	26095-0360	1 Each
	30	0.1	26095-0480	1 Each
		0.25	26095-1430	1 Each
0.53	10	0.15	26095-1640	1 Each
	30	0.15	26095-0620	1 Each

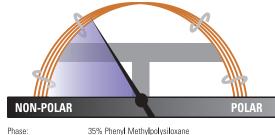
PBDE (Environmental) Application Kit

Description	Cat. No.	Quantity
PBDE (Environmental) Application Kit	60181-737	1 Each
Containing the following:		
TraceGOLD TG-5HT GC Column 15m x 0.25mm x 0.10µm	26095-0350	1 Each
BTO Septa 12.7mm Diameter	31303228	50 Pack
PTV Injector — Deactivated Glass Baffle Liner, 2mm ID x 2.75mm OD x 120mm Length	453T1001	5 Pack
PTV Injector – Graphite Liner Seals	29013417	2 Pack
PTV Injector — Graphite Ferrules for 0.25mm ID Column	29053488	10 Pack
MS Interface — Graphite/Vespel Ferrules for 0.25mm ID Column	29033496	10 Pack
2mL Screw Top Vials, Amber Glass	60180-567	100 Pack
Blue Caps With PTFE/Red Rubber Seals	60180-569	100 Pack
100μL Removable Needle Gas Tight Syringe, 50mm Length, 23 Gauge, Side Hole	36520050	1 Each

PBDE (ROSH) Application Kit

* * * * * * * * * * * * * * * * * * *		
Description	Cat. No.	Quantity
PBDE (ROSH) Application Kit	60181-738	1 Each
Containing the following:		
TraceGOLD TG-5HT GC Column 15m x 0.25mm x 0.10µm	26095-0350	1 Each
S/SL Injector — BTO Septa 17mm Diameter	31303211	50 Pack
S/SL Injector — Split/Splitless Liner, 5mm ID x 8mm OD x 105mm Length	45350033	5 Pack
S/SL Injector — Silver Seals	29033629	10 Pack
S/SL Injector — Graphite Liner Seals	29033406	10 Pack
S/SL Injector — Graphite Ferrules for 0.25mm ID Column	29053488	10 Pack
MS Interface — Graphite/Vespel Ferrules for 0.25mm ID Column	29033496	10 Pack
2mL Screw Top Vials, Amber Glass	60180-567	100 Pack
Blue Caps With PTFE/Red Rubber Seals	60180-569	100 Pack
10μL Fixed Needle Syringe, 50mm Length, 25 Gauge, Cone Needle	36500525	1 Each

Applications:


- Phenols
- Residual solvents
- Solvents
- Semivolatiles
- Pesticides
- PCBs
- Solvent impurities

- Rxi-5HT
- BP-5HT
- VF-5HT
- ZB-5HT

TraceGOLD TG-35MS GC Columns

Higher phenyl content for useful elution order and retention time changes

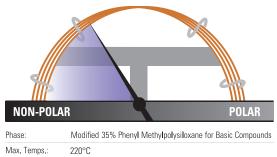
- Mid-polarity phase, 35% phenyl methylpolysiloxane
- Equivalent to USP G42 phase

Phase:	35% Phenyl Methylpolysiloxane	
Max. Temps.:	300°C/320°C	
USP Listing:	G42	

TraceGOLD TG-35MS GC Columns

ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.25	15	0.25	26094-1300	1 Each
		0.5	26094-2110	1 Each
	30	0.25	26094-1420	1 Each
		0.5	26094-2230	1 Each
0.32	15	0.25	26094-1310	1 Each
		0.5	26094-2120	1 Each
	30	0.25	26094-1430	1 Each
		0.5	26094-2240	1 Each
0.53	15	0.5	26094-2130	1 Each
		1.0	26094-2860	1 Each
		1.5	26094-3340	1 Each
		3.0	26094-3840	1 Each
	30	0.5	26094-2250	1 Each
		1.0	26094-2980	1 Each
		1.5	26094-3360	1 Each
		3.0	26094-3960	1 Each

Applications:


- Organochlorine pesticides and herbicides
- Pharmaceuticals
- PCB cogeners
- Aroclor mixes
- Sterols
- Rosin acids
- Phthalate esters

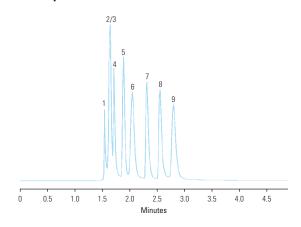
- Rtx-35
- BP-35
- HP-35
- SPB-35
- SPB-608

TraceGOLD TG-35MS AMINE GC Columns

Chemically altered tubing surface reduces tailing and eliminates the need for column priming

- Mid-polarity phase, base optimized 5% phenyl methylpolysiloxane
- Developed for analysis of active basic compounds without derivatization
- Also allows analysis of neutral compounds and adsorptive compounds with oxygen groups susceptible to hydrogen bonding
- Low bleed at maximum operating temperature

Phase:	Modified 35% Phenyl Methylpolysiloxane for Basic Compounds		
Max. Temps.:	220°C		
USP Listing:	N/A		


TraceGOLD TG-35MS AMINE GC Columns

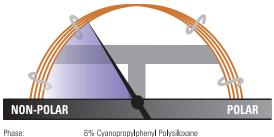
ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.25	15	0.5	26092-2110	1 Each
		1.0	26092-2840	1 Each
	30	0.5	26092-2230	1 Each
		1.0	26092-2960	1 Each
0.32	15	1.0	26092-2850	1 Each
	30	1.0	26092-2970	1 Each
		1.5	26092-3350	1 Each
0.53	15	1.0	26092-2860	1 Each
		3.0	26092-3840	1 Each
	30	1.0	26092-2980	1 Each
		3.0	26092-3960	1 Each

Applications:

- · Amines including alkylamines, diamines, triamines and ethanolamines
- Nitrogen-containing heterocyclics

Primary amines

Column: TG-35MS AMINE 30m x 0.53mm x 1.0µm


Part Number:	26092-2980
Temperature:	35°C (5 minute hold) Isothermal
Detector Type:	FID
Carrier Gas:	He
Flow Rate:	35cm/sec
Injection Volume:	1.0µL
Injection Mode:	Split (10:1), 250°C
1 mothylamina	6 tart-hutylamina

- 1. methylamine 2. dimethylamine
- 3. trimethylamine
- 4. ethylamine 5. isopropylamine
- 6. tert-butylamine 7. n-propylamine
- 8. diethylamine
- 9. sec-butylamine

TraceGOLD TG-1301MS GC Columns

Low bleed, excellent reproducibility and column-to-column consistency even with sensitive detectors like ECD and MS

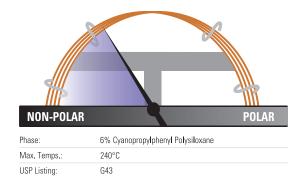
- Low to mid-polarity phase, 6% cyanopropylphenyl methylpolysiloxane
- Long lifetime
- Excellent inertness
- Equivalent to USP G43 phase

Phase:	6% Cyanopropylphenyl Polysiloxane	
Max. Temps.:	260°C/280°C	
USP Listing:	G43	

TraceGOLD TG-1301MS GC Columns

ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.25	15	0.25	26091-1300	1 Each
		0.5	26091-2110	1 Each
		1.0	26091-2840	1 Each
	30	0.25	26091-1420	1 Each
		0.5	26091-2230	1 Each
		1.0	26091-2960	1 Each
	60	0.25	26091-1540	1 Each
		0.5	26091-2350	1 Each
		1.0	26091-3080	1 Each
0.32	15	0.25	26091-1310	1 Each
		0.5	26091-2120	1 Each
		1.0	26091-2850	1 Each
	30	0.25	26091-1430	1 Each
		0.5	26091-2240	1 Each
		1.0	26091-2970	1 Each
		1.5	26091-3350	1 Each
		1.8	26091-3390	1 Each
	60	0.25	26091-1550	1 Each
		0.5	26091-2360	1 Each
		1.0	26091-3090	1 Each
		1.8	26091-3410	1 Each
0.53	15	0.25	26091-1320	1 Each
		0.5	26091-2130	1 Each
		1.0	26091-2860	1 Each
	30	0.25	26091-1440	1 Each
		0.5	26091-2250	1 Each
		1.0	26091-2980	1 Each
		1.5	26091-3360	1 Each
		3.0	26091-3960	1 Each
	60	0.25	26091-1560	1 Each
		0.5	26091-2370	1 Each
		1.0	26091-3100	1 Each
		1.5	26091-3370	1 Each
		3.0	26091-4080	1 Each

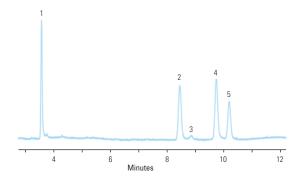
Applications:


- Alcohols
- Volatile organics
- Oxygenates
- Residual solvents

- Rtx-1301
- DB-1301
- BP-624
- HP-1301
- HP-624
- SPB-1301
- SPB-624
- VP-1301
- BF-624ms
- CP-1301
- CP-Select 624 CB

TraceGOLD TG-624 GC Columns

Offers 90+% resolution of the first six gases in EPA Method 8260 and EPA Method 524.2 for volatile organics analysis


- Low to mid-polarity phase, 6% cyanopropylphenyl methylpolysiloxane
- Ideal for EPA methods 624 and 608
- Allows resolution of 2-nitropropane from 1,1-dichloropropanone under EPA Method 524.2 revision IV

TraceGOLD TG-624 GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.18	20	1.0	26085-4950	1 Each
	40	1.0	26085-4960	1 Each
0.25	30	1.4	26085-3320	1 Each
	60	1.4	26085-3330	1 Each
0.32	30	1.8	26085-3390	1 Each
	60	1.8	26085-3410	1 Each
0.53	30	3.0	26085-3960	1 Each
	60	3.0	26085-4080	1 Each
	75	3.0	26085-4900	1 Each
	105	3.0	26085-4090	1 Each

Residual solvents class 1

Column: TG-624 30m x 0.32mm x 1.80µm

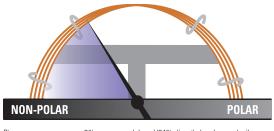
Part Number:	26085-3390
Temperature:	40°C (20 minute hold) to 240°C at 10°C/min (20 minute hold)
Detector Type:	FID
Carrier Gas:	Не
Flow Rate:	2.15mL/min
Injection Volume:	1.0µL
Injection Mode:	Headspace, Split (1:5), 140°C

- 1. 1,1-dichloroethane
- 2. 1.1.1-trichloroethane
- 3. carbon tetrachloride
- 4 henzene
- 5. 1,2-dichloroethane

Applications:

- Residual Solvents
- Volatile Organic Compounds
- Alcohols
- Oxygenates

- DB-1301
- DB-624
- HP-1301
- HP-624
- SPB-1301
- SPB-624
- VF-1301
- VF-624ms
- CP-1301


- CP-Select 624 CB
- Rtx-624
- BP-624
- ZB-624
- Optima-1301
- Optima-624
- AT-624
- 007-1301

TraceGOLD TG-624SilMS GC Columns

High thermal stability column ideal for volatile organics analysis

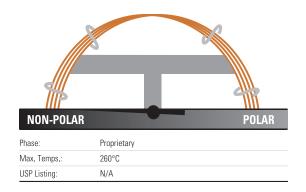
- Low to -mid polarity phase, 6% cyanopropylphenyl methylpolysiloxane
- High thermal stability maximum temperatures up to 320°C
- Highly inert excellent peak shape for a wide range of compounds

Phase:	6% cyanopropylphenyl/94% dimethyl arylene polysiloxane
Max. Temps.:	320°C
USP Listing:	G43

TraceGOLD TG-624SiIMS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.18	20	1.0	26059-4950	1 Each
0.25	30	1.4	26059-3320	1 Each
	60	1.4	26059-3330	1 Each
0.32	30	1.8	26059-3390	1 Each
	60	1.8	26059-3410	1 Each
0.53	30	3.0	26059-3960	1 Each
	60	3.0	26059-4080	1 Each
	75	3.0	26059-4900	1 Each
	105	3.0	26059-4090	1 Each

Applications:

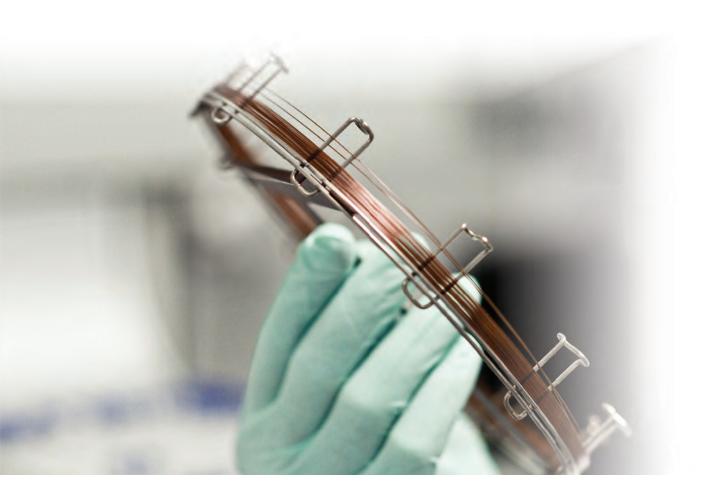

- Residual Solvents
- Volatile Organic Compounds
- Alcohols
- Oxygenates

- DB-624
- VF-624ms
- CP-Select 624 CB
- ZB-624

TraceGOLD TG-VRX GC Columns

Application specific column for volatile organic pollutants

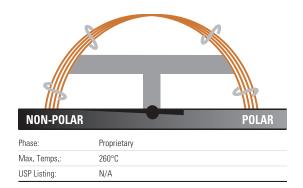
- Highly stable polymer phase
- Low bleed for excellent signal-to-noise ratio, sensitivity and mass spectral integrity
- Excellent resolution for analysis of volatile compounds
- Fast analysis times for volatile compounds


TraceGOLD TG-VRX GC Columns

ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.18	20	1.0	26081-4950	1 Each
	40	1.0	26081-4960	1 Each
0.25	30	1.4	26081-3320	1 Each
	60	1.4	26081-3330	1 Each
0.32	30	1.8	26081-3390	1 Each
	60	1.8	26081-3410	1 Each
0.53	30	3.0	26081-3960	1 Each
	60	3.0	26081-4080	1 Each
	75	3.0	26081-4900	1 Each
	105	3.0	26081-4090	1 Each

Applications:

- Volatile organic pollutants
- US EPA Method 8021 compounds


- Rtx-VRX
- DB-VRX

TraceGOLD TG-VMS GC Columns

Application specific column for volatile organic pollutants

- Highly stable polymer phase
- Low bleed for excellent signal-to-noise ratio, sensitivity and mass spectral integrity
- Excellent resolution for analysis of volatile compounds
- Fast analysis times for volatile compounds

TraceGOLD TG-VMS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.18	20	1.0	26080-4950	1 Each
	40	1.0	26080-4960	1 Each
0.25	30	1.4	26080-3320	1 Each
	60	1.4	26080-3330	1 Each
0.32	30	1.8	26080-3390	1 Each
	60	1.8	26080-3410	1 Each
0.53	30	3.0	26080-3960	1 Each
	60	3.0	26080-4080	1 Each
	75	3.0	26080-4900	1 Each

Applications:

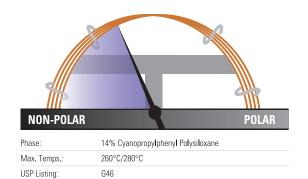
- Volatile organic pollutants
- US EPA Method 8260B compounds

Similar to:

• Rtx-VMS

Volatile Organic Compound (VOC) Application Kit

Description	Cat. No.	Quantity
Volatile Organic Compound (VOC) Application Kit	60181-734	1 Each
Containing the following:		
TraceGOLD TG-VMS GC Column 20m x 0.18mm x 1.00µm	26080-4950	1 Each
S/SL Injector — BTO Septa 9mm Diameter	31303240	50 Pack
S/SL Injector — Silver Seals	29033629	10 Pack
S/SL Injector — Graphite Liner Seals	29033406	10 Pack
S/SL Injector — Graphite Ferrules for 0.25mm ID Column	29053488	10 Pack
MS Interface — Graphite/Vespel Ferrules for 0.25mm ID Column	29033496	10 Pack
2mL Screw Top Vials, Amber Glass	60180-567	100 Pack
Blue Caps with PTFE/Red Rubber Seals	60180-569	100 Pack
40mL VOA Sample Vials with Caps and Seals	60180-573	72 Pack


Search thousands of applications in our chromatography resource center **www.thermoscientific.com/crc**

TraceGOLD TG-1701MS GC Columns

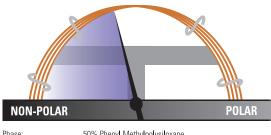
Feature a mix of cyano and phenyl groups for increased polarity and a different elution order relative to less polar columns

- Mid-polarity phase, 14% cyanopropylphenyl methylpolysiloxane
- Fully characterized for long-term reproducibility, column-to-column consistency and low bleed
- Optimal for confirmation analysis
- Equivalent to USP G46 phase

TraceGOLD TG-1701MS GC Columns

ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.1	10	0.1	26090-0200	1 Each
0.25	15	0.25	26090-1300	1 Each
		0.5	26090-2110	1 Each
		1.0	26090-2840	1 Each
	30	0.25	26090-1420	1 Each
		0.5	26090-2230	1 Each
		1.0	26090-2960	1 Each
	60	0.25	26090-1540	1 Each
		0.5	26090-2350	1 Each
		1.0	26090-3080	1 Each
0.32	15	0.25	26090-1310	1 Each
		0.5	26090-2120	1 Each
		1.0	26090-2850	1 Each
	30	0.25	26090-1430	1 Each
		0.5	26090-2240	1 Each
		1.0	26090-2970	1 Each
	60	0.25	26090-1550	1 Each
		0.5	26090-2360	1 Each
		1.0	26090-3090	1 Each
0.53	15	0.25	26090-1320	1 Each
		0.5	26090-2130	1 Each
		1.0	26090-2860	1 Each
		3.0	26090-3840	1 Each
	30	0.25	26090-1440	1 Each
		0.5	26090-2250	1 Each
		1.0	26090-2980	1 Each
		3.0	26090-3960	1 Each
	60	0.25	26090-1560	1 Each
		0.5	26090-2370	1 Each
		1.0	26090-3100	1 Each
		3.0	26090-4080	1 Each

Applications:


- Alcohols
- Pesticides
- Oxygenates
- PCB cogeners
- Aroclor mixes

- Rtx-1701
- DB-1701
- HP-1701
- SPB-1701
- VF-1701
- CP-Sil 19 CB

TraceGOLD TG-17MS GC Columns

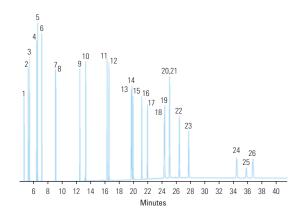
Particularly suited to GC-MS applications that require more polarity than a 5% Phenyl phase

- Mid-polarity phase of 50% phenyl methylpolysiloxane
- Ideal for confirmational analysis
- Excellent inertness for active compounds such as pesticides
- Very low bleed ideal for analysis by GC-MS

Phase:	50% Phenyl Methylpolysiloxane
Max. Temps.:	300°C/320°C
USP Listing:	G43

TraceGOLD TG-17MS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.1	10	0.1	26089-0200	1 Each
0.25	15	0.25	26089-1300	1 Each
		0.5	26089-2110	1 Each
		1.0	26089-2840	1 Each
	30	0.25	26089-1420	1 Each
		0.5	26089-2230	1 Each
		1.0	26089-2960	1 Each
	60	0.25	26089-1540	1 Each
0.32	15	0.25	26089-1310	1 Each
		0.5	26089-2120	1 Each
		1.0	26089-2850	1 Each
	30	0.25	26089-1430	1 Each
		0.5	26089-2240	1 Each
		1.0	26089-2970	1 Each
0.53	15	0.25	26089-1320	1 Each
		0.5	26089-2130	1 Each
		1.0	26089-2860	1 Each
		1.5	26089-3340	1 Each
	30	0.25	26089-1440	1 Each
		0.5	26089-2250	1 Each
		1.0	26089-2980	1 Each
		1.5	26089-3360	1 Each


Applications:

- Pesticides and herbicides
- Rosin acids
- Phthalate esters
- Triglycerides
- Sterols

Similar to:

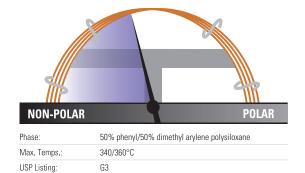
- Rxi-17
- DB-17
- DB-608
- VF-17ms
- CP-SiI 24 CB

Polycyclic aromatic hydrocarbons

Column: TG-17MS 30m x 0.25mm x 0.25µm

26089-1420
90°C (1.0 minute hold) to 215°C (0.5 minute hold) at 25°C/minute to 235°C at 4°C/minute to 280°C/minute at 15°C/minute to 320°C (20 minute hold) at 4°C/minute
MS
Не
1.2mL/min
1.0µL
Splitless, 300°C

- 1. naphthalene
- 2. 1-methylnaphthalene
- 3. 2-methylnaphthalene
- 4. acenaphthylene
- 5. acenaphthene
- 6. fluorene
- 7. phenanthrene
- 8. anthracene
- 9 fluoranthene 10. pyrene
- 11. benzo(a)anthracene
- 12. chrysene
- 13. benzo(b)fluoranthene


- 14. benzo(k)fluoranthene
- - 15. benzo(j)fluoranthene 16. benzo(a)pyrene
 - 17. 3-methylcholanthrene

 - 18. dibenzo(a,h)acridine
 - 19. dibenzo(a,j)acridine
 - 20. indeno(1.2.3-cd)pyrene
 - 21. dibenzo(a,h)anthracene

 - 22. benzo(ghi)perylene
 - 23. 7H-dibenzo(c,q)carbazole 24. dibenzo(a,e)pyrene
 - 25. dibenzo(a.i)pyrene
 - 26. dibenzo(a,h)pyrene

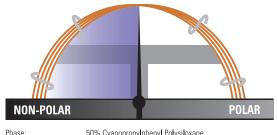
Excellent separation of active environmental compounds

- Mid-polarity phase of 50% phenyl methylpolysiloxane
- High thermal stability maximum temperatures up to 340/360°C
- Excellent inertness for active environmental compounds such as PAH's

TraceGOLD TG-17SilMS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.18	20	0.18	26072-5780	1 Each
		0.36	26072-1380	1 Each
0.25	15	0.25	26072-1300	1 Each
	30	0.25	26072-1420	1 Each
0.32	15	0.25	26072-1310	1 Each
	30	0.25	26072-1430	1 Each

Applications:


- PAHs
- Pesticides and herbicides
- Phthalate esters
- Triglycerides

- DB-17ms
- VF-17ms
- CP-Sil 24 CB
- ZB-50
- BPX-50

TraceGOLD TG-225MS GC Columns

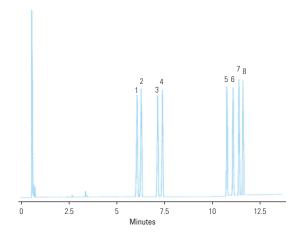
Offers better thermal stability than comparable columns

- Polar phase, 50% cyanopropylmethyl phenylmethylpolysiloxane
- Innovative deactivation process for siloxane reduces tailing and improves efficiency over comparable columns
- Equivalent to USP G7, G19 phases

Phase:	50% Cyanopropylphenyl Polysiloxane	
Max. Temps.:	220°C/240°C	
USP Listing:	G7, G19	

TraceGOLD TG-225MS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	15	0.25	26083-1300	1 Each
0.23	13	0.5	26083-2110	1 Each
	30	0.25	26083-1420	1 Each
		0.5	26083-2230	1 Each
	60	0.25	26083-1540	1 Each
		0.5	26083-2350	1 Each
0.32	15	0.25	26083-1310	1 Each
		0.5	26083-2120	1 Each
	30	0.25	26083-1430	1 Each
		0.5	26083-2240	1 Each
	60	0.5	26083-2360	1 Each
0.53	15	0.25	26083-1320	1 Each
		0.5	26083-2130	1 Each
	30	0.25	26083-1440	1 Each
		0.5	26083-2250	1 Each
	60	0.5	26083-2370	1 Each


Applications:

- FAMEs
- Carbohydrates
- Sterols
- Flavor compounds

Similar to:

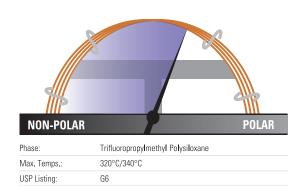
- Rtx-225
- DB-225
- HP-225
- SPB-225

Sugars

Column: TG-225MS 15m x 0.25mm x 0.25µm

Part Number:	26083-1300
Temperature:	190°C (5 minute hold) to 250°C at 8°C/min (5 minute hold)
Detector Type:	FID
Carrier Gas:	Hydrogen
Flow Rate:	45cm/sec
Injection Volume:	0.5µL
Injection Mode:	Split (35:1), 260°C
4	E

rhamnitol
 fucitol
 ribitol


4. arabinitol

5. mannitol6. galactitol7. glucitol8. inositol

TraceGOLD TG-200MS GC Columns

Exceptionally inert mid-polarity columns with selectivity and elution order optimized for difficult separations

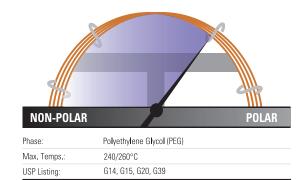
- Polar phase,trifluoropropyl methylpolysiloxane solid phase resolves compounds that phenyl and cyano phases cannot
- Outstanding thermal stability and low bleed
- Suitable for use with sensitive detectors including ECD, NPD and MS
- Confirmation column in combination with another GC column

TraceGOLD TG-200MS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	30	0.25	26084-1420	1 Each
		0.5	26084-2230	1 Each
		1.0	26084-2960	1 Each
0.32	30	0.25	26084-1430	1 Each
		0.5	26084-2240	1 Each
		1.0	26084-2970	1 Each

Applications:

- Solvents
- Fluorocarbons
- Alcohols and ketones
- Silanes
- Glycols


- Rtx-200MS
- DB-200

TraceGOLD TG-WaxMS GC Columns

Manufactured for better column-to-column reproducibility

- Polar phase, polyethylene glycol
- Polar-deactivated surface tightly binds polymer for excellent thermal stability
- Resists oxidative damage, damage from strongly acidic or basic volatiles better than silicone solid phases

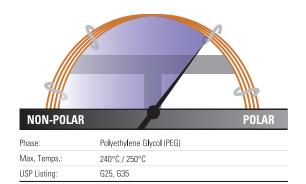
TraceGOLD TG-WaxMS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.1	10	0.1	26088-0200	1 Each
0.18	20	0.18	26088-5780	1 Each
0.25	15	0.25	26088-1300	1 Each
		0.5	26088-2110	1 Each
	30	0.25	26088-1420	1 Each
		0.5	26088-2230	1 Each
	60	0.25	26088-1540	1 Each
		0.5	26088-2350	1 Each
0.32	15	0.25	26088-1310	1 Each
		0.5	26088-2120	1 Each
		1.0	26088-2850	1 Each
	30	0.25	26088-1430	1 Each
		0.5	26088-2240	1 Each
		1.0	26088-2970	1 Each
	60	0.25	26088-1550	1 Each
		0.5	26088-2360	1 Each
		1.0	26088-3090	1 Each
0.53	15	0.25	26088-1320	1 Each
		0.5	26088-2130	1 Each
		1.0	26088-2860	1 Each
	30	0.25	26088-1440	1 Each
		0.5	26088-2250	1 Each
		1.0	26088-2980	1 Each
		1.5	26088-3360	1 Each
	60	0.25	26088-1560	1 Each
		0.5	26088-2370	1 Each
		1.0	26088-3100	1 Each
		1.5	26088-3370	1 Each

Applications:

- FAMEs
- Flavor compounds and essential oils
- Solvents
- Xylene isomers
- EPA Method 603 for Acrolein/ Acrylonitrile

Similar to:


- DB-WAX
- DB-WAXetr
- HP-Wax
- HP-Innowax
- Supelcowax 10
- CP-Wax 52 CB
- Stabilwax
- Rtx-Wax
- BP20
- ZB-Wax
- Optima Wax
- AT-Wax

Search thousands of applications
in our chromatography resource center
www.thermoscientific.com/crc

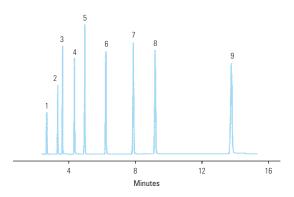
TraceGOLD TG-WaxMS A GC Columns

Acidic functionality in the polymer structure allows analysis of acidic compounds without derivatization

- Polar phase, acid-deactivated polyethylene glycol
- · Resists oxidative damage and adsorption of acids
- Excellent peak shapes for high MW acids
- Equivalent to USP G25, G35 phases

TraceGOLD TG-WaxMS A GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	15	0.25	26087-1300	1 Each
		0.5	26087-2110	1 Each
	30	0.25	26087-1420	1 Each
		0.5	26087-2230	1 Each
	60	0.25	26087-1540	1 Each
		0.5	26087-2350	1 Each
0.32	15	0.25	26087-1310	1 Each
		0.5	26087-2120	1 Each
	30	0.25	26087-1430	1 Each
		0.5	26087-2240	1 Each
		1.0	26087-2970	1 Each
	60	0.25	26087-1550	1 Each
		0.5	26087-2360	1 Each
0.53	15	0.25	26087-1320	1 Each
		0.5	26087-2130	1 Each
		1.0	26087-2860	1 Each
	30	0.25	26087-1440	1 Each
		0.5	26087-2250	1 Each
		1.0	26087-2980	1 Each
	60	0.25	26087-1560	1 Each
		0.5	26087-2370	1 Each
		1.0	26087-3100	1 Each


Applications:

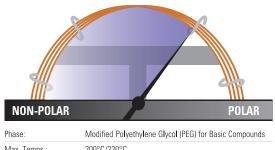
- · Organic acids
- Free fatty acids
- Alcohols

Similar to:

- DB-FFAP
- HP-FFAP
- NUKOL
- 0V-351
- CP-Wax 58 CB
- FFAP
- Stabilwax-DA
- BP-21
- Optima FFAP

Free fatty acids

Column: TG-WaxMS A 30m x 0.25mm x 0.25µm


Part Number:	26087-1420
Temperature:	145°C Isothermal
Detector Type:	FID
Carrier Gas:	Hydrogen
Flow Rate:	40cm/sec
Injection Volume:	1.0µL
Injection Mode:	Split (50:1), 250°C

- 1. acetic acid 2. propionic acid
- 3. isobutyric acid 4. n-butyric acid
- 5. isovaleric acid
- 6. n-valeric acid 7. isocaproic acid
- 8. caproic acid 9. heptanoic acid

TraceGOLD TG-WaxMS B GC Columns

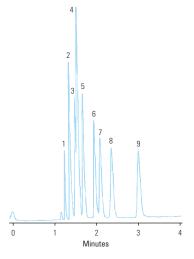
Base deactivation allows analysis of basic analytes without derivatization or column priming

- Polar phase, base deactivated polyethylene glycol phase
- Reduced absorption and improved responsiveness for basic compounds
- Not suitable for use with water or alcohols

Phase: Modified Polyethylene Glycol (PEG) for Basic Com			
Max. Temps.:	200°C/220°C		
USP Listing:	N/A		

TraceGOLD TG-WaxMS B GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	15	0.25	26086-1300	1 Each
	30	0.25	26086-1420	1 Each
		0.5	26086-2230	1 Each
0.32	15	0.25	26086-1310	1 Each
		1.0	26086-2850	1 Each
	30	0.25	26086-1430	1 Each
		0.5	26086-2240	1 Each
		1.0	26086-2970	1 Each
	60	1.0	26086-3090	1 Each
0.53	15	1.0	26086-2860	1 Each
	30	0.5	26086-2250	1 Each
		1.0	26086-2980	1 Each
	60	1.0	26086-3100	1 Each


Applications:

- Amines
- Alkylamines
- Diamines
- Other basic compounds

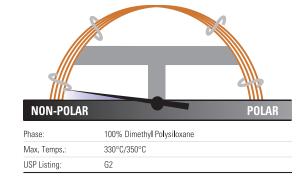
Similar to:

- CAM
- Carbowax Amine
- CP Wax51
- Stabilwax-DB

Amines

Column: TG-WaxMS B 30m x 0.53mm x 1.0µm

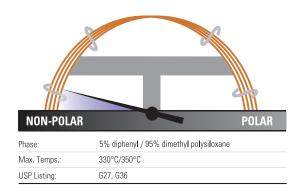
Part Number:	26086-2980
Temperature:	45°C Isothermal
Detector Type:	FID
Carrier Gas:	Hydrogen
Flow Rate:	40cm/sec
Injection Volume:	1μL
Injection Mode:	Direct Injection, 250°C
trimethylamine dimethylamine	6. n-propylamine


- dimethylamine
 ethylamine
 methylamine
- 7. tert-butylamine 8. diethylamine 9. sec-butylamine

TraceGOLD GC Columns with SafeGuard

Extend your column lifetime without compromising performance

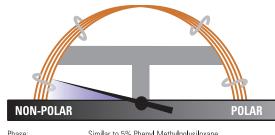
- Integrated guard on the GC column
- Prolong the lifetime of an analytical GC column
- No impact upon performance when cutting column during routine maintenance
- Available in a range of phases to meet many application needs


TraceGOLD TG-1MS GC Columns with SafeGuard

TraceGOLD TG-1MS GC Columns with SafeGuard

ID (mm)	Length (m)	Film Thickness (μm)	SafeGuard Length (m)	Cat. No.	Quantity
0.25	30	0.25	5	26099-1425	1 Each
0.53	30	1.0	5	26099-2985	1 Each
		5.0	5	26099-4705	1 Each

TraceGOLD TG-5MS GC Columns with SafeGuard

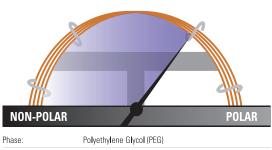


TraceGOLD TG-5MS GC Columns with SafeGuard

ID (mm)	Length (m)	Film Thickness (μm)	SafeGuard Length (m)	Cat. No.	Quantity
0.18	20	0.18	5	26098-5785	1 Each
0.25	15	0.25	5	26098-1305	1 Each
	30	0.1	5	26098-0475	1 Each
		0.25	5	26098-1425	1 Each
		0.5	5	26098-2235	1 Each
0.32	30	0.25	5	26098-1435	1 Each

Thermo Scientific Chromatography Columns and Consumables 2014-2015

TraceGOLD TG-5SilMS GC Columns with SafeGuard



Phase: Similar to 5% Phenyl Methylpolysiloxane			
Max. Temps.:	330°C/350°C		
USP Listing:	G27, G36		

TraceGOLD TG-5SilMS GC Columns with SafeGuard

ID (mm)	Length (m)	Film Thickness (μm)	SafeGuard Length (m)	Cat. No.	Quantity
0.25	15	0.25	10	26096-1301	1 Each
	30	0.25	5	26096-1425	1 Each
		0.25	10	26096-1421	1 Each
		0.5	5	26096-2235	1 Each
0.32	30	0.5	5	26096-2245	1 Each

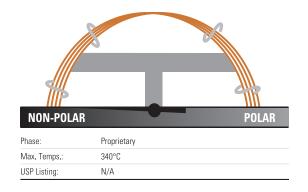
TraceGOLD TG-WaxMS GC Columns with SafeGuard

Phase:	Polyethylene Glycol (PEG)
Max. Temps.:	240/260°C
USP Listing:	G14, G15, G20, G39

TraceGOLD TG-WaxMS GC Columns with SafeGuard

ID (mm)	Length (m)	Film Thickness (μm)	SafeGuard Length (m)	Cat. No.	Quantity
0.25	15	0.25	5	26088-1305	1 Each
	30	0.25	10	26088-1421	1 Each
0.32	30	0.25	5	26088-1435	1 Each

Trying to find the right column for your separation? Use our column selection guides



PAGE 3-005

TraceGOLD TG-Dioxin GC Columns

Excellent separation of toxic dioxin and furan congeners

- Isomer specificity for 2,3,7,8-TCDD and 2,3,7,8-TCDF achieved with a single GC column
- High thermal stability maximum temperatures up to 340°C
- Unique selectivity for toxic dioxin and furan congeners allows use as a confirmation GC column

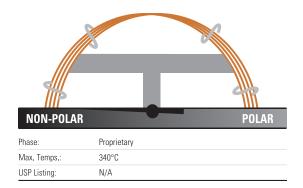
TraceGOLD TG-Dioxin GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.18	40	0.18	26066-4800	1 Each
0.25	60	0.25	26066-1540	1 Each

Persistant Organic Pollutants (POPs) Confirmation Kit

Description	Cat. No.	Quantity
Persistant Organic Pollutants (POPs) Confirmation Kit	TS-MKITG503	1 Each
Containing the following:		
TraceGOLD TG-Dioxin GC Column 60m x 0.25mm x 0.25µm	26066-1540	1 Each
S/SL Injector — BTO Septa 11mm diameter	31303233	50 Pack
S/SL Injector — Split Straight Liner 4 x 6.3 x 78.5mm, Quartz Wool	453A2265	5 Pack
S/SL Injector — Splitless Liner with Single Taper 4 x 6.3 x 78.5mm, Quartz Wool	453A1925	5 Pack
Gold Inlet Base Seals, Single Column Installation	290GA081	10 Pack
Graphite Liner Sealing Rings	290GA243	10 Pack
Graphite Ferrules for 0.1-0.32mm Column	290GA139	10 Pack
Graphite/Vespel Ferrules for 0.1-0.25mm Column	290VA191	10 Pack
1.1mL Screw Top Tapered Vial, Clear Gold Grade Glass	1.1-STVG	500 Pack
8mm Screw Caps with Pre-Fitted Silicone/PTFE Septa	8-SC-ST15	500 Pack
10μL fixed Needle Syringe for TriPlus RSH, 57mm Length, 26s Gauge	365D0291	1 Each

Applications:


- Dioxins
- Furans

- Rtx-Dioxin2
- DB-Dioxin

TraceGOLD TG-OCP I/TG-OCP II GC Columns

Application-specific columns for organochlorine pesticides and herbicides

- Low bleed for excellent signal-to-noise ratio, sensitivity and mass spectral integrity
- Fast analysis time giving full separation of chlorinated pesticides
- Ideal for US EPA methods 8081, 608 and CLP

TraceGOLD TG-OCP I GC Columns

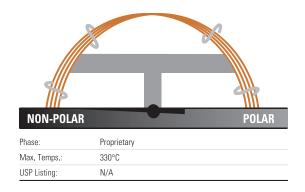
ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.10	10	0.1	26078-0200	1 Each
0.18	10	0.18	26078-1510	1 Each
	20	0.18	26078-5780	1 Each
0.25	15	0.25	26078-1300	1 Each
	30	0.25	26078-1420	1 Each
	60	0.25	26078-1540	1 Each
0.32	15	0.5	26078-2120	1 Each
	30	0.32	26078-5760	1 Each
		0.5	26078-2240	1 Each
0.53	15	0.5	26078-2130	1 Each
	30	0.5	26078-2250	1 Each

TraceGOLD TG-OCP II GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.10	10	0.1	26077-0200	1 Each
	20	0.1	26077-1450	1 Each
0.18	10	0.14	26077-5700	1 Each
	20	0.14	26077-5690	1 Each
0.25	15	0.2	26077-5730	1 Each
	30	0.2	26077-5720	1 Each
	60	0.2	26077-5710	1 Each
0.32	15	0.25	26077-1310	1 Each
	30	0.25	26077-1430	1 Each
		0.5	26077-2240	1 Each
0.53	15	0.42	26077-5750	1 Each
	30	0.42	26077-5740	1 Each

Applications:

- Organochlorine pesticides
- Herbicides


Similar to:

• Rtx-CLPesticides/ Rtx-CLPesticides2

TraceGOLD TG-OPP I/TG-OPP II GC Columns

Application-specific columns for organophosphorus pesticides

- Low bleed for excellent signal-to-noise ratio, sensitivity and mass spectral integrity
- Fast analysis time giving full separation of organophosphorus pesticides
- Ideal for US EPA methods 8141A

TraceGOLD TG-OPP I GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	30	0.25	26076-1420	1 Each
0.32	30	0.5	26076-2240	1 Each
0.53	30	0.83	26076-0690	1 Each

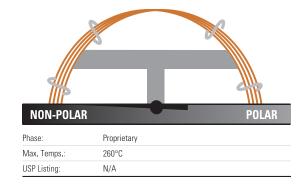
TraceGOLD TG-OPP II GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.18	20	0.2	26076-1580	1 Each
0.25	30	0.25	26075-1420	1 Each
0.32	30	0.32	26075-5760	1 Each
0.53	30	0.5	26075-2250	1 Each

Applications:

• Organophosphorus pesticides

Similar to:


• Rtx-OPPesticides/ Rtx-OPPesticides2

TraceGOLD TG-ALC Plus I / TG-ALC Plus II GC Columns

Application-specific columns for blood alcohol analysis

- Low bleed for excellent signal-to-noise ratio, sensitivity and mass spectral integrity
- Fast analysis time giving full separation of blood alcohols

TraceGOLD TG-ALC Plus I GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.32	30	1.8	26063-3390	1 Each
0.53	30	3.0	26063-3960	1 Each

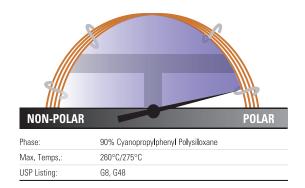
TraceGOLD TG-ALC Plus II GC Columns

	ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
	0.32	30	0.5	26063-2240	1 Each
·	0.53	30	1.0	26063-2980	1 Each

Applications:

- Blood alcohol analysis
- Abused inhalent anesthetics
- γ-hydroxybutyrate (GHB)
- γ -butyrolactone (GBL)
- Glycols
- Common industrial solvents

Similar to:


• Rtx BAC Plus 1 / Rtx BAC Plus 2

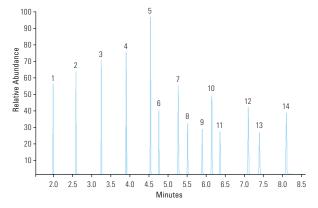
TraceGOLD TG-POLAR GC Columns

Specifically designed polymer and surface treatment overcome traditional problems with high-polarity columns

- Highly polar phase, 95% Cyanopropylphenyl Polysiloxane
- Strong dipole moment and high selectivity for cis/trans compounds or compounds with conjugated double bonds
- Equivalent to USP G8 and G48

TraceGOLD TG-POLAR GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	30	0.1	26082-0470	1 Each
		0.2	26082-5010	1 Each
	60	0.1	26082-0590	1 Each
		0.2	26082-5020	1 Each
	105	0.1	26082-5000	1 Each
		0.2	26082-5030	1 Each
0.32	30	0.2	26082-5040	1 Each
	60	0.2	26082-5050	1 Each
	105	0.2	26082-5060	1 Each
0.53	30	0.1	26082-0490	1 Each
		0.2	26082-5070	1 Each
	60	0.1	26082-0610	1 Each
		0.2	26082-5080	1 Each


Applications:

- Cis/Trans FAMEs
- Dioxins

Similar to:

- DB-23
- Silar 10c
- HP-23
- CP-Sil 88
- Rtx-2330
- **FAME** • CP-Sil 88 • SP-2330
- SP-2380
- SPB-2560
- BPX 70 • BPX 90
- HP-88

FAMEs C8-C24

Column: TG-POLAR 30m x 0.25mm x 0.25µm 26082-1420

raitivuilibei.	20002-1420			
Temperature:	100°C (0.5 minute hold) to 195°C at 25°C/minute (1 minute hold) to 250°C at 10°C/minute (3 minute hold)			
Detector Type:	MS			
Carrier Gas:	He			
Flow Rate:	1.2mL/min			
Injection Volume:	0.1µL			
Injection Mode:	Split (100:1), 250°C			

- 1. Methyl octanoate
- 2. Methyl decanoate
- 3. Methyl decanoate
- 4. Methyl myristate
- 5. Methyl palmitate
- 6. Methyl palmitoleate
- 7. Methyl stearate 8. Methyl oleate
- 9. Methyl linoleate
 - 10. Methyl linolenate
 - 11. Methyl arachidate 12. Methyl behenate
 - 13. Methyl cis-13-
 - docosenoate 14. Methyl tetracosanoate

www.thermoscientific.com/chromatography

GC chemists are continually striving to reduce analysis times to increase sample throughput. TraceGOLD Fast GC columns are shorter, smaller ID columns compared with conventional GC columns. This means that analysis times can be reduced.

Faster analysis with the same separation

Analysis times can be decreased by using the following:

- Shorter columns
- Quicker oven temperature ramp rate
- Higher carrier gas linear velocity

These changes also decrease resolution – however, this can be offset by the following:

- Narrow ID columns
- Hydrogen as a carrier gas
- · Small film thickness

When decreasing column length and ID, it is important to maintain the phase ratio between your conventional column and fast GC column. Using the table below will help to ensure the correct dimensions of column are selected:

Phase Ratio

Phase Ratio is the ratio of the volume of mobile phase to the stationary phase. It is an important value when changing the column dimensions in a method:

Phase Ratio (β) – column ID (μ m) / 4 x film thickness (μ m)

Column diameter,					Film	thickness, c	l _f (μm)				
d _c (mm)	0.15	0.18	0.25	0.5	1	1.4	1.5	1.8	2.65	3	5
0.15	250	208	150	75	38	27	25	21	14	13	8
0.18	300	250	180	90	45	32	30	25	17	15	9
0.25	417	347	250	125	63	45	42	35	24	21	13
0.32	533	444	320	160	80	57	53	44	30	27	16
0.53	883	736	530	265	133	95	88	74	50	44	27

A $0.25 \text{mm} \times 0.25 \text{\mu m}$ GC column has the same phase ratio as a $0.15 \text{mm} \times 0.15 \text{\mu m}$ column, so will show the same selectivity provided the column stationary phase is kept the same. However, the efficiency on the 0.15 mm ID column will be greater, allowing for a similar separation to be performed with a shorter column length.

The performance of a $30m \times 0.25mm \times 0.25mm \times 0.25mm \times 0.15mm \times 0.15mm$ column in up to 30% less time.

Faster analysis with the same separation

Selection of the most appropriate TraceGOLD Fast GC column will ensure that column performance and separation is maintained while decreasing analysis time.

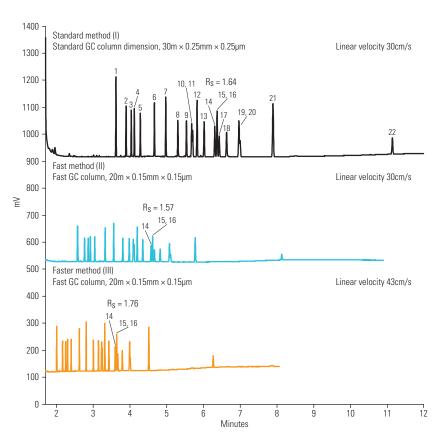
Benefits of faster analysis:

- Increase speed of analysis by a factor of 3-10 times
- Faster method development
- Reduction in analysis costs
- Run any application with no compromise in the quality of results

Easy optimization of conventional methods

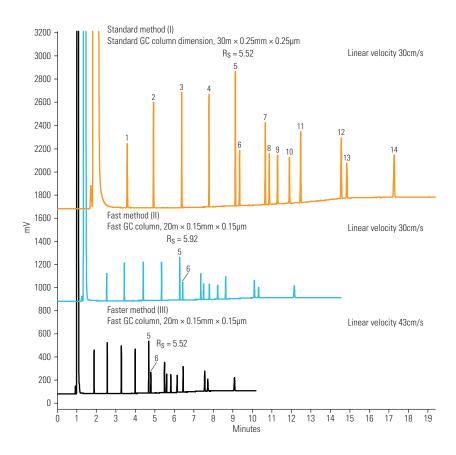
TraceGOLD Fast GC columns can be applied to any application in any industry. Conventional GC methods can easily be transferred to Fast GC columns without compromising performance, through consideration of the following parameters:

- Column length
- Column ID
- · Column film thickness
- · Carrier gas linear velocity


A reduction in column length will increase speed of analysis, but will lead to a decrease in resolution. This decrease can be offset by a decrease in column ID.

The table below shows approximate column dimensions that can be replaced with a TraceGOLD Fast GC column in order to achieve faster GC analysis. The ratio of column length to ID and phase ration are kept the same, provided the carrier gas flow rate and fast oven ramp rate are adjusted to give similar performance.

Present Column	Fast GC Column
15m x 0.25mm x 0.25μm	10m x 0.15mm x 0.15μm
30m x 0.25mm x 0.25μm	20m x 0.15mm x 0.15μm
60m x 0.25mm x 0.25μm	40m x 0.15mm x 0.15μm
15m x 0.32mm x 0.25µm	10m x 0.15mm x 0.15μm
30m x 0.32mm x 0.25μm	15m x 0.15mm x 0.15μm
60m x 0.32mm x 0.25μm	30m x 0.15mm x 0.15μm


The applications below demonstrate how TraceGOLD Fast GC columns can speed up analysis without compromising results.

Fast Analysis of Organochlorine Pesticides using TraceGOLD TG-5SilMS

The analysis time decreased by 30% on the Fast GC column (II) compared with the standard column (I) with a minimal reduction in resolution of approximately 4%. Method (II) was then further modified by increasing the linear velocity by approximately 40-50% to give the faster method (III). The analysis time was reduced by approximately 50% of the original method (I) with a slight increase in resolution of about 7%.

Fast Analysis of FAMEs using TraceGOLD TG-WaxMS

The analysis time decreased by 30% on the Fast GC column (II) compared with the standard column (I) with an increase in resolution of approximately 7%. Method (II) was then further modified by increasing the linear velocity by approximately 40-50% to give the faster method (III). The analysis time was reduced by approximately 50% of the original method (I) with no change in resolution.

TraceGOLD Fast GC Columns Ordering Information

TraceGOLD TG-1MS Fast GC Columns

ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.15	10	0.15	26099-2750	1 Each
	20	0.15	26099-2760	1 Each
	40	0.15	26099-2940	1 Each
0.18	20	0.18	26099-5780	1 Each

TraceGOLD TG-5MS Fast GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.15	10	0.15	26098-2750	1 Each
	20	0.15	26098-2760	1 Each
	40	0.15	26098-2940	1 Each
0.18	20	0.18	26098-5780	1 Each

TraceGOLD TG-5SilMS Fast GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.15	10	0.15	26096-2750	1 Each
	20	0.15	26096-2760	1 Each
	40	0.15	26096-2940	1 Each
0.18	20	0.18	26096-5780	1 Each

TraceGOLD TG-WaxMS Fast GC Columns

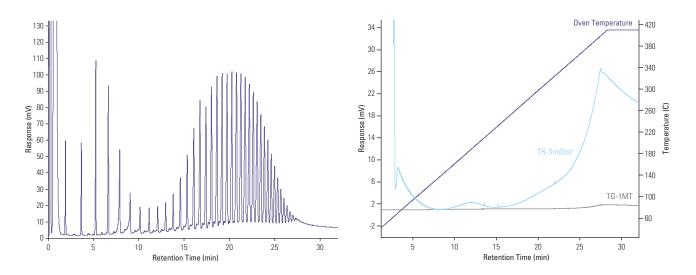
ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.15	10	0.15	26088-2750	1 Each
	20	0.15	26088-2760	1 Each
	40	0.15	26088-2940	1 Each
0.18	20	0.18	26088-5780	1 Each

TraceGOLD TG-200MS Fast GC Columns

ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.15	10	0.15	26084-2750	1 Each
	20	0.15	26084-2760	1 Each

TraceGOLD TG-17SilMS Fast GC Columns

ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.15	10	0.15	26072-2750	1 Each
	20	0.15	26072-2760	1 Each


TraceGOLD Metal GC Columns – Technical Information

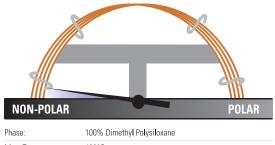
Push the limits of your analyses

Your analysis is critical, so your tools are critical. Thermo Scientific TraceGOLD Metal GC columns are proven to withstand the stress of elevated temperatures and highly active compounds, without any breakdown or column bleed.

Thermo Scientific TraceGOLD Metal GC columns enable the user to work at higher temperatures with no compromise in performance. The columns also withstand added stress and perform to the high standard expected from a TraceGOLD GC column when analysing highly active and aggressive compounds.

TraceGOLD Metal Column	Temperature Range (°C)
TG-1MT	-60 to 430
TG-5MT	-60 to 430
TG-WaxMT	+40 to 260

Left: A simulated distillation chromatogram showing carbon range C12-C90 using a TG-1MT metal GC column.


Right: Chromatogram showing the relative amounts of column bleed using a TG-1MT GC column against a TR-SimDist GC column when running a blank. As can be seen, the TG-1MT shows significantly lower bleed levels once the temperature rises above 300°C.

TraceGOLD TG-1MT Metal GC Columns

Metal columns for elevated temperature use

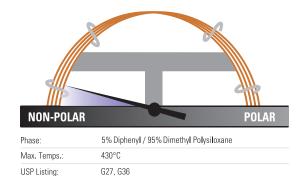
- Non-polar, 100% dimethyl polysiloxane
- Low bleed for excellent signal-to-noise ratio, sensitivity and mass spectral integrity
- Stable to 430°C

Phase:	100% Dimethyl Polysiloxane
Max. Temps.:	430°C
USP Listing:	G2

TraceGOLD TG-1MT Metal GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	15	0.25	26M99-1300	1 Each
	30	0.25	26M99-1420	1 Each
		0.5	26M99-2230	1 Each
		1.0	26M99-2960	1 Each
	60	0.25	26M99-1540	1 Each
0.53	5	0.1	26M99-4130	1 Each
		0.88	26M99-4120	1 Each
	6	0.15	26M99-4100	1 Each
	12	0.1	26M99-0710	1 Each
	15	0.5	26M99-2130	1 Each
		1.0	26M99-2860	1 Each
	30	0.25	26M99-1440	1 Each
		0.5	26M99-2250	1 Each
		1.0	26M99-2980	1 Each
		1.5	26M99-3360	1 Each
		3.0	26M99-3960	1 Each

Applications:


- Hydrocarbons
- Solvent impurities
- PCB congeners
- Aroclor mixes
- Simulated distillation
- Drugs of abuse
- Natural gas odorants
- Essential oils
- Pesticides

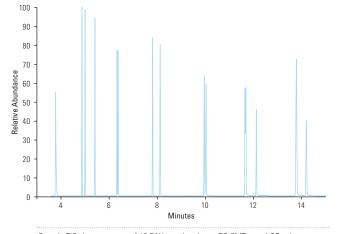
- MXT-1
- SPB-1
- DB-1
- Equity-1
- DB-1MS
- MDN-1
- HP-1
- CP-Sil 5 CB
- HP-1MS
- VF-1ms
- Ultra-1
- ZB-1HT

TraceGOLD TG-5MT Metal GC Columns

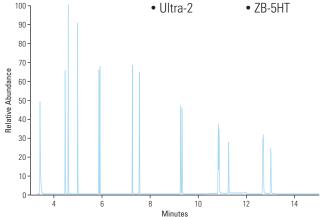
The most widely used MS phase in gas chromatography

- Low polarity phase, 5% phenyl methylpolysiloxane
- Low bleed for excellent signal-to-noise ratio, sensitivity and mass spectral integrity
- Exceptional inertness ideal for analysis of active compounds

TraceGOLD TG-5MT Metal GC Columns


ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	15	0.1	26M98-0350	1 Each
		0.25	26M98-1300	1 Each
	30	0.25	26M98-1420	1 Each
		0.5	26M98-2230	1 Each
		1.0	26M98-2960	1 Each
	60	0.25	26M98-1540	1 Each
0.53	15	1.0	26M98-2860	1 Each
	30	0.25	26M98-1440	1 Each
		0.5	26M98-2250	1 Each
		1.0	26M98-2980	1 Each
		1.5	26M98-3360	1 Each
		3.0	26M98-3960	1 Each

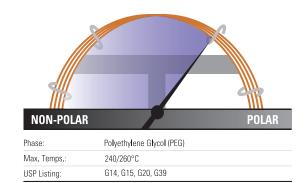
Applications:


- Drugs
- · Solvent impurities
- Pesticides
- Hydrocarbons
- PCB congeners
- Essential oils
- Semivolatiles

Similar to:

- MXT-5
- SPB-5
- DB-5
- Equity-5
- HP-5
- MDN-5
- HP-5MS
- CP-Sil 8 CB
- Ultra-2
- ZB-5HT

Sample TIC chromatogram of 16 PAHs analyzed on a TG-5MT metal GC column.


Sample TIC chromatogram of 16 PAHs analyzed on a TG-5MS GC column.

Only 15 peaks are shown here as Indeno(1,2,3-cd)pyrene and Dibenzo(a,h)anthracene coelute. They can be separated using MS. These chromatograms illustrate that the chromatography is not adversely affected by using a metal column over a silica column.

TraceGOLD TG-WaxMT Metal GC Columns

Manufactured for better column-to-column reproducibility

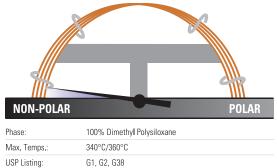
- Polar phase, polyethylene glycol
- Polar-deactivated surface tightly binds polymer for excellent thermal stability
- Resists oxidative damage from strongly acidic or basic volatiles better than silicone solid phases
- Equivalent to USP G14, G15, G20 and G39 phases

TraceGOLD TG-WaxMT Metal GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	15	0.1	26M88-0350	1 Each
		0.25	26M88-1300	1 Each
	30	0.25	26M88-1420	1 Each
		0.5	26M88-2230	1 Each
	60	0.25	26M88-1540	1 Each
0.53	15	0.5	26M88-2130	1 Each
		1.0	26M88-2860	1 Each
	30	0.25	26M88-1440	1 Each
		0.5	26M88-2250	1 Each
		1.0	26M88-2880	1 Each
		1.5	26M88-3360	1 Each

Applications:

- FAMEs
- Flavor compounds
- Essential oils
- Amines
- Solvents
- Xylene isomers
- EPA Method 603 for Acrolein/ Acrylonitrile


- MXT-WAX
- DB-WAX
- DB-WAXetr
- HP-Wax
- HP-Innowax
- Supelcowax 10
- CP-Wax 52 CB

TRACE TR-1MS GC Columns

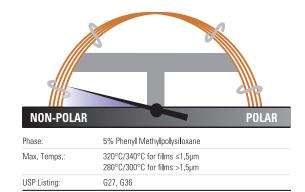
Extremely low-bleed non-polar columns suitable for GC/MS applications

- Non-polar phase, 100% dimethyl polysiloxane
- High operating temperature
- Inert phase suited for environmental analyses

TRACE TR-1MS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	30	0.1	260B047P	1 Each
		0.25	260B142P	1 Each
	60	0.25	260B154P	1 Each
0.32	30	0.25	260B143P	1 Each
	60	0.25	260B155P	1 Each
		1.0	260B309P	1 Each

Applications:


- Chlorinated and nitroaromatic compounds
- GC/MS environmental analyses

- DB-1 RSL-160
- DB-Petro ZB-1
- BP1 CB-1
- HP-1 OV-1
- HP-1MS PE-1
- Rtx-1 007-1(MS)
- Ultra-1 SP-2100
- Old I
- SPB-1 SE-30
- SPB-1 Sulfur RH-1
- Petrocol DH CC-1
- ______
- CP-Sil 5CB CP-Sil 5CB MS
- RSL-150 VF-1ms

TRACE TR-5 GC Columns

Excellent starting columns for method development, capable of performing most required separations

- Non-polar phase, 5% phenyl methyl polysiloxane
- High operating temperature and extremely low bleed
- Widely used in a variety of applications

TRACE TR-5 GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	15	0.25	260E130P	1 Each
	30	0.25	260E142P	1 Each
		0.5	260E223P	1 Each
	60	0.25	260E154P	1 Each
0.32	7	0.25	260E113P	1 Each
	15	0.25	260E131P	1 Each
	30	0.25	260E143P	1 Each
		0.5	260E224P	1 Each
		1.0	260E297P	1 Each
	60	0.25	260E155P	1 Each
		1.0	260E309P	1 Each
	100	0.5	260E242P	1 Each
0.53	15	1.0	260E286P	1 Each
	30	0.5	260E225P	1 Each
		1.0	260E298P	1 Each
		1.5	260E336P	1 Each
		5.0	260E470P	1 Each

Applications:

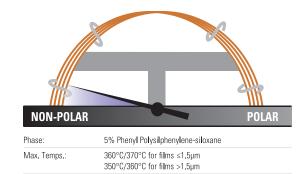
- Alcohols
- Free fatty acids
- Aromatics
- Flavors
- Low polarity pesticides

Similar to:

- DB-5
- CP-SiI 8CB
- BP5
- SPB-5
- Rtx-5
- AT-5
- HP-5
- ZB-5
- Ultra-2
- 007-2(MPS-5)
- PTE-5
- SE-52
- SPB-5
- SE-54
- MDN-5

Thermo Scientific SOLA SPE Cartridges are revolutionizing sample preparation, visit

PAGE 1-007


or www.thermoscientific.com/sola-spe

TRACE TR-5MS GC Columns

Feature a popular GC-MS phase for many applications

- Non-polar phase, 5% phenyl polysilphenylene-siloxane
- · Low bleed and high stability
- High signal-to-noise ratio for increased sensitivity
- High robustness to oxygen and water contamination

TRACE TR-5MS GC Columns

ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity	App
0.10	10	0.1	260F020P	1 Each	• Hy
0.15	25	0.25	260F134P	1 Each	_ • So
0.18	20	0.18	260F578P	1 Each	- • Pe:
0.25	15	0.1	260F035P	1 Each	
		0.25	260F130P	1 Each	• He
		1.0	260F284P	1 Each	• Ph
	30	0.1	260F047P	1 Each	• An
		0.25	260F142P	1 Each	
		0.25	260F142J	1 Each	
		0.5	260F223P	1 Each	Simi
		1.0	260F296P	1 Each	• DB
	60	0.25	260F154P	1 Each	• DB
		1.0	260F308P	1 Each	— • DB
0.32	10	0.1	260F024P	1 Each	
	15	1.0	260F285P	1 Each	• BP
	30	0.25	260F143P	1 Each	• Rtx
		0.5	260F224P	1 Each	• Rtx
		1.0	260F297P	1 Each	• AT-
	60	1.0	260F309P	1 Each	
		0.25	260F155P	1 Each	• AT-
	100	0.5	260F242P	1 Each	• 007
0.53	15	0.5	260F213P	1 Each	• CP-
		3.0	260F384P	1 Each	• Ult
	30	0.5	260F225P	1 Each	
		1.0	260F298P	1 Each	• HP
		1.5	260F336P	1 Each	• HP
		3.0	260F396P	1 Each	• SPI

pplications:

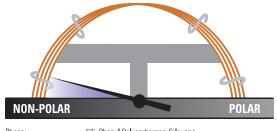
- Hydrocarbons
- Solvents

G27, G36

USP Listing:

- Pesticides
- Herbicides
- Phenols
- Amines

- DB-5


- BPX5
- Rtx-5MS
- Rtx-5
- AT-5
- AT-5MS
- 007-5MS
- CP-Sil 8CB
- HP-5
- HP-5MS
- SPB-5

- MDN-5S
- DB-5MS
 - VF-5ms
- DB-5.625 XTI-5
- RSL-200 • CB-5
- 0V-5
- PE-5
- 007-2(MP-5)
- SE-52 • SE-54
- PTE-5
- CC-5
- RH-5ms • ZB-5

TRACE TR-5HT GC Columns

Feature upper temperature limits as high as 400°C

- Non-polar phase, 5% phenyl polycarborane siloxane
- Allow the elution of higher-boiling hydrocarbons up to C100
- Low bleed even at elevated temperatures

Phase:	5% Phenyl Polycarborane Siloxane
Max. Temps.:	380°C/400°C
USP Listing:	G27, G36

TRACE TR-5HT GC Columns

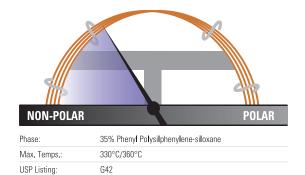
ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	15	0.1	260H035P	1 Each
	30	0.1	260H047P	1 Each
		0.25	260H142P	1 Each
0.32	12	0.1	260H030P	1 Each

Applications:

- Hydrocarbons
- Solvents
- Pesticides
- Herbicides
- Phenols
- Amines

- DB-5
- CP-SiI 8CB
- BP5 • Rtx-5
- SPB-5 • AT-5

- HP-5
- ZB-5
- Ultra-2
- 007-2(MPS-5)
- PTE-5
- SE-52
- SPB-5



TRACE TR-35MS GC Columns

Mid-polarity columns excellent for many applications

- Mid-polarity phase, 35% phenyl polysilphenylene-siloxane
- Exceptionally low surface activity
- Low bleed even at elevated temperatures

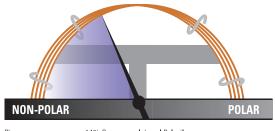
TRACE TR-35MS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.22	15	0.25	260C129P	1 Each
	25	0.25	260C135P	1 Each
0.25	15	0.25	260C130P	1 Each
	30	0.25	260C142P	1 Each
		0.5	260C223P	1 Each
	60	0.25	260C154P	1 Each
0.32	15	0.25	260C131P	1 Each
	30	0.25	260C143P	1 Each
		0.5	260C224P	1 Each
0.53	15	1.0	260C286P	1 Each
	30	1.0	260C298P	1 Each

Applications:

- Pesticides
- Herbicides
- Drugs of abuse
- PAHs
- Pharmaceuticals

Similar to:


- DB-35
- DB-35MS
- HP-35
- HP-35MS
- MDN-35
- Rtx-35
- SPB-35
- BPX35

Search thousands of applications in our chromatography resource center www.thermoscientific.com/crc

TRACE TR-1701 GC Columns

Mid-polarity column with alternative selectivity

- Mid-polarity phase, 14% cyanopropylphenyl polysiloxane
- Low bleed even at a high operating temperature
- Excellent starting point for method development
- Suitable for a wide variety of applications

Phase:	14% Cyanopropylphenyl Polysiloxane
Max. Temps.:	280°C/300°C
USP Listing:	G46

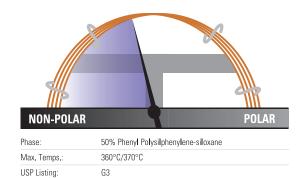
TRACE TR-1701 GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	30	0.25	260Q142P	1 Each
	60	0.25	260Q154P	1 Each
0.32	15	0.25	260Q131P	1 Each
	30	0.25	260Q143P	1 Each
	60	1.0	260Q309P	1 Each
		0.25	260Q155P	1 Each
0.53	30	1.0	260Q298P	1 Each

Applications:

- Pesticides
- PCBs
- PAHs
- Organic acids
- Drugs
- Steroids
- EPA 608, 8081

- DB-1701
- Rtx-1701
- HP-1701
- BP10
- 0V-1701
- 007-1701
- CP-SiI 19 CB



TRACE GC Columns

TRACE TR-50MS GC Columns

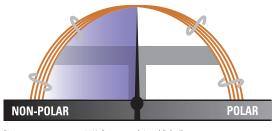
Mid-polarity columns well-suited to GC/MS applications

- Mid-polarity phase, 50% phenyl polysilphenylene-siloxane
- Low bleed decreases MS contamination
- Particularly useful for applications requiring a higher temperature and more polarity than a 5% phenyl column
- Column inertness results in minimal peak tailing and decreased breakdown of sensitive samples

TRACE TR-50MS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.10	10	0.1	260R020P	1 Each
0.25	15	0.25	260R130P	1 Each
	30	0.1	260R047P	1 Each
		0.15	260R050P	1 Each
		0.25	260R142P	1 Each
	60	0.25	260R154P	1 Each
0.32	30	0.25	260R143P	1 Each
0.53	15	0.5	260R213P	1 Each
	30	0.5	260R225P	1 Each

Applications:


- Herbicides
- Drugs of abuse
- EPA 604, 608, 8060, 8081
- Pharmaceuticals

- 0V-17
- HP-17
- SP-2250
- AT50
- DB-17
- RSL-300
- DB-17ms
- PE-17
- DB-17ht
- CC-17
- BPX50
- 00 17
- Rtx-50
- 007-17 (MPS-50)
- SPB-50
- SPB-17
- HP-50+
- ZB-50

TRACE TR-225 GC Columns

Reliable and reproducible performance

- Mid-polarity phase, 50% cyanopropylphenyl polysiloxane
- Low bleed even at elevated temperatures
- Outstanding robustness for difficult separations
- Manufactured to minimize risk of damage from contaminated carrier gas

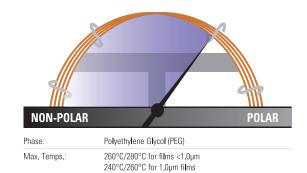
Phase:	50% Cyanopropylphenyl Polysiloxane	
Max. Temps.:	230°C / 250°C	
USP Listing:	G7	

TRACE TR-225 GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.25	15	0.25	260Y130P	1 Each
	30	0.25	260Y142P	1 Each
	60	0.25	260Y154P	1 Each
0.32	25	0.25	260Y137P	1 Each

Applications:

- Fatty Acid Methyl Esters (FAMEs)
- Carbohydrates
- Neutral sterols


- DB-225
- HP-225
- RTX-225
- BP225

TRACE GC Columns

General-purpose, high-polarity columns

- Polar phase, polyethylene glycol
- Highly crosslinked and fully deactivated
- Solvent washable

TRACE TR-Wax GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.10	10	0.1	260W020P	1 Each
0.25	15	0.25	260W130P	1 Each
	30	0.25	260W142P	1 Each
		0.5	260W223P	1 Each
		1.0	260W296P	1 Each
	60	0.25	260W154P	1 Each
0.32	15	0.25	260W131P	1 Each
	30	0.25	260W143P	1 Each
		0.5	260W224P	1 Each
		1.0	260W297P	1 Each
	60	0.25	260W155P	1 Each
		0.5	260W236P	1 Each
		1.0	260W309P	1 Each
0.53	15	1.0	260W286P	1 Each
	30	0.5	260W225P	1 Each
		1.0	260W298P	1 Each
	60	1.0	260W310P	1 Each

Applications:

Esters

G16, G20

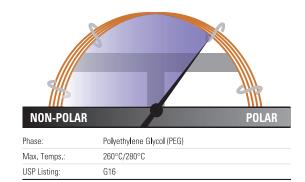
USP Listing:

- Alcohols
- Ketones
- Glycols
- Aromatic isomers

Similar to:

- DB-Wax
- AT-Wax Nukol
- BP20
- Rtx-Wax
- CP Wax52CB
- Stabilwax
- SUPEROX II
- HP-20M
 - Carbowax
- HP-Wax
- PE-WAX
- HP-INNOWax
- ZB-Wax
- SUPELCOWAX 10

A full portfolio of GC accessories can be found on


PAGE 3-087

or www.thermoscientific.com/gcconsumables

TRACE TR-WaxMS GC Columns

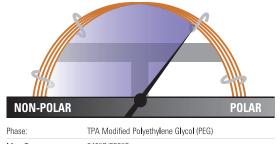
Feature a high-polarity phase designed for mass spectometry detectors

- Polar phase, polyethylene glycol
- Proprietary bonding method expands operating temperatures
- Extremely low bleed improves sensitivity and library matches
- High stability with oxygen and water

TRACE TR-WaxMS GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.10	20	0.1	260X145P	1 Each
0.25	30	0.25	260X142P	1 Each
		0.5	260X223P	1 Each
		1.0	260X296P	1 Each
	60	0.25	260X154P	1 Each
		0.5	260X235P	1 Each
0.32	30	0.25	260X143P	1 Each
		0.5	260X224P	1 Each
	60	0.25	260X155P	1 Each
		1.0	260X309P	1 Each
0.53	30	1.0	260X298P	1 Each

Applications:


- Aromatic hydrocarbons
- Food additives
- Essential oils
- Alcohols
- Esters
- Aldehydes
- Ketones

- DB-Wax
- Rtx-Wax
- Stabilwax
- HP-20M
- BP20
- HP-Wax
- HP-INNOWax
- SUPELCOWAX
- 10
- AT-Wax
- Nukol
- CP Wax 52CB
- ZB-Wax

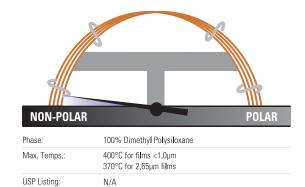
TRACE TR-FFAP GC Columns

High-polarity phase optimized for FFAP analysis

- Polar phase, TPA modified polyethylene glycol
- Bonded FFAP phase
- Quality tested for acidic compound analysis

Phase:	TPA Modified Polyethylene Glycol (PEG)		
Max. Temps.:	240°C/250°C		
USP Listing:	G25, G35		

TRACE TR-FFAP Capillary GC Columns


ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.25	15	0.25	260N130P	1 Each
	30	0.25	260N142P	1 Each
	60	0.25	260N154P	1 Each
0.32	15	0.25	260N131P	1 Each
	30	0.25	260N143P	1 Each
	50	0.5	260N230P	1 Each
0.53	15	0.5	260N213P	1 Each
	30	0.5	260N225P	1 Each
		1.0	260N298P	1 Each

TRACE TR-SimDist GC Columns

Feature a low-polarity phase for high temperature analyses

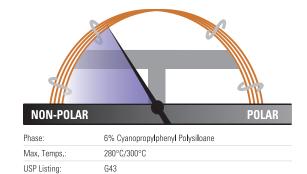
- Non-polar phase, 100% dimethyl polysiloxane
- Optimized for simulated distillation analysis
- High temperature limits
- Strongly cross-linked

TRACE TR-SimDist GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.53	10	0.1	260S025P	1 Each
		0.9	260S250P	1 Each
		2.65	260S348P	1 Each

Applications:

- High molecular weight hydrocarbons
- Simulated distillation
- ASTM D2887, D6532


- DB-HT Sim Dis
- DB-2887
- BPX1
- Rtx-2887
- HP-1
- Petrocol 2887
- Petrocol EX2887

TRACE GC Columns

Mid-polarity, thick-film columns

- Mid-polarity phase, 6% cyanopropylphenyl polysiloxane
- Thick films for the analysis of volatile analytes
- Low bleed suitable for MS detection

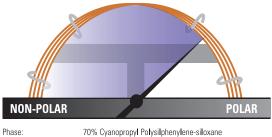
TRACE TR-V1 GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.18	20	1.0	260V495P	1 Each
0.25	30	1.4	260V332P	1 Each
	60	1.4	260V333P	1 Each
0.32	30	1.8	260V339P	1 Each
	60	1.8	260V341P	1 Each
0.53	30	3.0	260V396P	1 Each
		5.0	260V470P	1 Each

Applications:

- Volatile organics
- Alcohols
- EPA 502.2, 608 and 624

Similar to:


- DB-624
- BPX volatiles
- Rtx volatiles
- VOCOL 56
- 0V-624
- AT-624
- HP-VOC
- CP-Select 624CB
- 007-624
- ZM-624

Search thousands of applications
in our chromatography resource center
www.thermoscientific.com/crc

TRACE TR-FAME GC Columns

High-polarity phase optimized for FAME analysis

- Polar phase, 70% cyanopropyl polysilphenylene-siloxane
- High operating temperature compared to competitor columns
- Low bleed for mass spectrometry use

Phase:	70% Cyanopropyl Polysilphenylene-siloxane
Max. Temps.:	250°C/260°C
USP Listing:	N/A

TRACE TR-FAME GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.10	10	0.2	260M096P	1 Each
0.22	25	0.25	260M135P	1 Each
	30	0.25	260M141P	1 Each
	50	0.25	260M147P	1 Each
	60	0.25	260M153P	1 Each
0.25	30	0.25	260M142P	1 Each
	60	0.25	260M154P	1 Each
	120	0.25	260M166L	1 Each
0.32	25	0.25	260M137P	1 Each
	30	0.25	260M143P	1 Each
	50	0.25	260M149P	1 Each
	60	0.25	260M155P	1 Each

Applications:

- Fatty Acid Methyl Esters (FAMEs)
- FAMEs Cis/Trans Isomers

- DB-23
- BPX70
- Rtx-2330
- SP-2330
- CP-Sil 88
- SP-2380
- HP-23
- VF-23ms
- 007-23
- AT-Silar
- PE-23

TRACE GC Columns for Specific EPA Methods

Low bleed and temperature-stable performance tailored to specific EPA methodologies

- TRACE TR-524 and TRACE TR-525 Columns: US EPA Drinking Water Test Methods 524 or 525
- TRACE TR-527 Columns: US EPA Drinking Water Test Method 527, features the robust, low-bleed performance required for analysis of pesticides and flame retardants
- TRACE TR-8270 Columns: US EPA Solid Waste Test Method 8270
- TRACE TR-8095 Columns: US EPA Method 8095 for Explosives Testing featuring high max temperature and low surface activity

TRACE GC Columns for Specific EPA Methods

Phase	ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
TR-524	0.18	20	1.0	26RV495P	1 Each
TR-525	0.25	30	0.25	26RX142P	1 Each
TR-527	0.25	30	0.25	26RF142P	1 Each
TR-8095	0.32	12	0.25	260P123P	1 Each
TR-8270	0.25	30	0.5	26RF223P	1 Each
TR-8270	0.25	30	1.0	26RF296P	1 Each

Applications:

- Volatile Organic Compounds (VOCs)
- Pesticides
- Flame retardants
- Explosives

TRACE GC Columns for Dioxin and PCB Analysis

Designed to meet the requirements of high resolution GC/MS methods

- TRACE TR-Dioxin 5MS Columns; Specifically designed for Dioxin and Furan testing
- Wide coverage of the 17 cogeners with the highest toxicological significance
- TRACE TR-PCB 8MS Columns; meets the requirements for HR GC-MS analysis of PCBs
- Low bleed

TRACE GC Columns for Specific EPA Methods

Phase	ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
TR-PCB 8MS	0.25	50	0.25	26AJ148P	1 Each
TR-Dioxin 5MS	0.25	60	0.25	26AF154P	1 Each
TR-Dioxin 5MS	0.25	30	0.1	26AF047P	1 Each
TR-Dioxin 5MS	0.25	60	0.1	26AF059P	1 Each

Applications:

- Dioxins (PCDDs)
- Furans (PCDFs)
- PCB congeners

Application Kits for Screening and Confirmation of Persistant Organic Pollutants (POPs)

Persistant Organic Pollutants (POPs) Screening Kit

Description	Cat. No.	Quantity
Persistant Organic Pollutants (POPs) Screening Kit	TS-MKITG501	1 Each
Containing the following:		
TRACE TR-Dioxin 5MS GC Column 30m x 0.25mm x 0.10µm	26AF047P	1 Each
S/SL Injector — BTO Septa 17mm Diameter	31303211	50 Pack
S/SL Injector — Split/Splitless Liner, 5mm ID x 8mm OD x 105mm Length	45350033	5 Pack
S/SL Injector — Silver Seals	29033629	10 Pack
S/SL Injector — Graphite Liner Seals	29033406	10 Pack
S/SL Injector — Graphite Ferrules for 0.25mm ID Column	29053488	10 Pack
MS Interface — Graphite/Vespel Ferrules for 0.25mm ID Column	29033496	10 Pack
1.1mL Screw Top Tapered Vial, Clear Gold Grade Glass	1.1-STVG	500 Pack
8mm Screw Caps with Pre-fitted Silicone/PTFE Seal	8-SC-ST15	500 Pack
10μL Fixed Needle Syringe, 50mm Length, 25 Gauge, Cone Needle	36500525	1 Each

Persistant Organic Pollutants (POPs) Confirmation Kit

Description	Cat. No.	Quantity
Persistant Organic Pollutants (POPs) Confirmation Kit	TS-MKITG502	1 Each
Containing the following:		
TRACE TR-Dioxin 5MS GC Column 60m x 0.25mm x 0.25µm	26AF154P	1 Each
S/SL Injector — BTO Septa 17mm Diameter	31303211	50 Pack
S/SL Injector — Split/Splitless Liner, 5mm ID x 8mm OD x 105mm Length	45350033	5 Pack
S/SL Injector — Silver Seals	29033629	10 Pack
S/SL Injector — Graphite Liner Seals	29033406	10 Pack
S/SL Injector — Graphite Ferrules for 0.25mm ID Column	29053488	10 Pack
MS Interface — Graphite/Vespel Ferrules for 0.25mm ID Column	29033496	10 Pack
1.1mL Screw Top Tapered Vial, Clear Gold Grade Glass	1.1-STVG	500 Pack
8mm Screw Caps with Pre-fitted Silicone/PTFE Seal	8-SC-ST15	500 Pack
10uL Fixed Needle Syringe, 50mm Length, 25 Gauge, Cone Needle	36500525	1 Each

TRACE TR-BioDiesel GC Columns

Designed for use in carbon neutral fuels development applications

- TRACE TR-BioDiesel (M) Columns; for determination of residual methanol content in Biodiesel according to EN method 14110
- TRACE TR-BioDiesel (G) Columns; for the analysis of total glyceride content according to EN method 14105
- TRACE TR-BioDiesel (F) Columns; for the analysis of FAME content in biodiesel according to EN method 14103
- TRACE TR-BioDiesel (G) ASTM Columns; for the analysis of total glyceride content according to ASTM method D-6584
- Specific columns developed for the determination of methanol, FAMEs or glycerides

Applications:

- Biodiesel
- ASTM D-6584
- EN14214

TRACE TR-BioDiesel GC Columns

Phase	ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
TR-Bio[Diesel (M) 0.32	30	3.0	26AA395P	1 Each
TR-Bio[Diesel (G) 0.32	10	0.1	26AF024P	1 Each
TR-Bio[Diesel (F) 0.25	30	0.25	26AX142P	1 Each
TR-Bio[Diesel (G) ASTM 0.32	10	0.1	26RF024P	1 Each

TRACE GC Columns for Drugs of Abuse

Specifically designed for the analysis of common drugs of abuse

- TRACE TR-DoA 5MS Columns; widely used for the analysis and determination of a range of toxicological target compounds including amphetamines, codeine and morphine
- TRACE TR-DoA 35MS Columns; the recommended column for use in drug testing labs for the confirmation of THC

TRACE GC Columns for Drugs of Abuse

Phase	ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
TR-DoA35	0.20	15	0.33	26AC497P	1 Each
TR-DoA5	0.25	15	0.25	26AF130P	1 Each

Drugs of Abuse / Toxicology Screening Kit

Description	Cat. No.	Quantity
Drugs of Abuse / Toxicology Screening Kit	60181-741	1 Each
Containing the following:		
TRACE TR-DoA 5MS GC Column 15m x 0.25mm x 0.25µm	26AF130P	1 Each
TRACE TR-DoA 35MS GC Column 15m x 0.20mm x 0.33µm	26AC497P	1 Each
S/SL Injector — BTO Septa 17mm Diameter	31303211	50 Pack
S/SL Injector — Split/Splitless Liner, 5mm ID x 8mm OD x 105mm Length	45350033	5 Pack
S/SL Injector — Graphite Ferrules for 0.25mm ID Column	29053488	10 Pack
MS Interface — Graphite/Vespel Ferrules for 0.25mm ID Column	29033496	10 Pack
S/SL Injector – Deactivated Glass Wool 10g	60180-785	1 Each
2mL Screw Top Vials, Amber with PTFE/Red Rubber Seal	60180-565	100 Pack
250μL Glass Inserts with Rubber Polyspring	60180-566	100 Pack
10μL Gas Tight Syringe, Fixed Needle, 50mm Length, 23 Gauge, Cone Needle	365D3741	1 Each
HyperSep Verify-CX SPE Columns 200mg 10mL	60108-742	50 Pack

Applications:

- Amphetamines, codeine and morphine
- Carboxy-THC

TRACE GC Columns for Pesticides

Specifically designed and tested for analysis of pesticides

- Low bleed decreases MS contamination
- Particularly useful for applications requiring a higher temperature
- Column inertness results in minimal peak tailing and decreased breakdown of sensitive samples

Applications:

- Organophosphate pesticides
- Organochlorine pesticides
- Pyrethroid pesticides
- Herbicides

TRACE GC Columns for Pesticides

Phase	ID (mm)	Length (m)	Film Thickness (µm)	Guard	Cat. No.	Quantity
TR-Pesticide	0.25	30	0.25	5m guard column attached	26RF142F	1 Each
TR-Pesticide II	0.25	30	0.25	5m guard column attached	26RD142F	1 Each
TR-Pesticide III	0.25	30	0.25	5m guard column attached	26RC142F	1 Each
TR-Pesticide IV	0.25	30	0.25	_	26RC142P	1 Each

Application Kits for Pesticide Analysis

Pesticide (S/SL Installation) Application Kit

Description	Cat. No.	Quantity
Pesticide (S/SL Installation) Application Kit	60181-730	1 Each
Containing the following:		
TRACE TR-Pesticide II GC Column 30m x 0.25mm x 0.25µm + 5m Guard Column	26RD142F	1 Each
Deactivated Silica Guard Column 0.53mm ID x 2m Length	26060375	1 Each
SilTite Column Connector (0.1-0.25mm to 0.1-0.53mm)	290MU498	1 Each
SilTite Ferrules 0.53mm Column ID	290MF231	10 Pack
S/SL Injector — Split/Splitless Deactivated Liner 3mm ID x 8mm OD x 105mm Length	453T2121	5 Pack

Pesticide (S/SL Consumables) Application Kit

Description	Cat. No.	Quantity
Pesticide (S/SL Consumables) Application Kit	60181-732	1 Each
Containing the following:		
TRACE TR-Pesticide II GC Column 30m x 0.25mm x 0.25 μ m + 5m Guard Column	26RD142F	2 Pack
Deactivated Silica Guard Column 0.53mm ID x 2m Length	26060375	10 Pack
SilTite™ Column Connector (0.1-0.25mm to 0.1-0.53mm)	290MU498	2 Pack
SilTite Ferrules 0.53mm Column ID	290MF231	30 Pack
SilTite Ferrules 0.25mm Column ID	290MF229	30 Pack
S/SL Injector — Split/Splitless Deactivated Liner 3mm ID x 8mm OD x 105mm Length	453T2121	25 Pack

Pesticide (PTV Installation) Application Kit

Description	Cat. No.	Quantity
Pesticide (PTV Installation) Application Kit	60181-731	1 Each
Containing the following:		
TRACE TR-Pesticide II GC Column 30m x 0.25mm x 0.25 μ m + 5m Guard Column	26RD142F	1 Each
Deactivated Silica Guard Column 0.53mm ID x 2m Length	26060375	1 Each
SilTite Column Connector (0.1-0.25mm to 0.1-0.53mm)	290MU498	2 Pack
SilTite Ferrules 0.53mm Column ID	290MF231	10 Pack
PTV Injector — Deactivated Baffle Liner 2mm ID x 2.75mm OD x 120mm Length	453T2120	5 Pack

Pesticide (PTV Consumables) Application Kit

Description	Cat. No.	Quantity
Pesticide (PTV Consumables) Application Kit	60181-733	1 Each
Containing the following:		
TRACE TR-Pesticide II GC Column 30m x 0.25mm x 0.25 μ m + 5m Guard Column	26RD142F	2 Pack
Deactivated Silica Guard Column 0.53mm ID x 2m Length	26060375	10 Pack
SilTite Column Connector (0.1-0.25mm to 0.1-0.53mm)	290MU498	2 Pack
SilTite Ferrules 0.53mm Column ID	290MF231	30 Pack
SilTite Ferrules 0.25mm Column ID	290MF229	30 Pack
PTV Injector – Deactivated Baffle Liner 2mm ID x 2.75mm OD x 120mm Length	453T2120	25 Pack

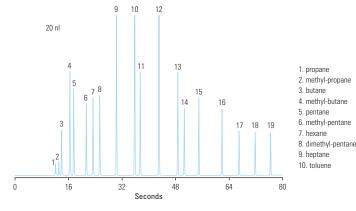
UltraFast GC Columns – Technical Information

The huge demand of samples to be analyzed every day by labs in industries such as environmental and petrochemical requires an increased speed of analysis

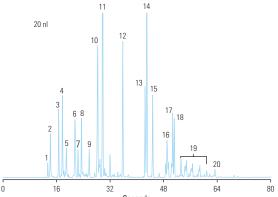
A significant gain in analysis speed compared to conventional GC procedures is obtained through UltraFast Gas Chromatography. UltraFast GC utilizes short (2-10m) narrow bore capillaries and temperature programming conditions usually faster than 2°C/s. This leads to peak widths in the 50-200ms range. The analysis times are in the range of 1 minute or even less.

Benefits of UltraFast GC Columns

- Dramatically shorter analysis times typically a minute or less
- Ideal for applications in petrochem and environmental markets
- · Long column lifetimes


Application – UltraFast Analysis of Pure Petroleum **Products through Nanovolumes Injection**

The analyses were performed in the UltraFast GC mode using a TRACE GC Ultra System equipped with a Split/Splitless injector (SSL) and a Digital Pressure and Flow Controller, as well as a FAST FID detector. The GC System was also equipped with an UltraFast Module (UFM).


Split injections were performed with a AS3000 Autosampler using a 0.5µL plunger-in-needle syringe p/n 36504045. A minimum penetration depth in the injector (cold needle mode) was set, and 0.3µL of air was automatically withdrawn after the sample to ensure that the part of the needle inserted into the injector was empty. A 3mm ID upper-tapered empty liner with an 8mm long and 1mm wide restriction at the top was installed. The SSL injector was set to 225°C and the FID to 320°C.

Column: UFC-1 10m x 0.32mm x 3um

Part Number:	UFMC00002070414
Temperature:	40°C (6 sec hold) to 300°C (6 sec hold) at 180°C/min
Detector Type:	FID
Carrier Gas:	Helium
Flow Rate:	0.5mL/min
Injection Mode:	Split/Splitless

- 11. octane 2. methyl-propane 12. p-xylene 3. butane 13. propyl-benzene 4. methyl-butane 14. n-decane 15. butyl-benzene
 - 16. n-dodecane 17. n-tridecane
 - 18. n-tetradecane 19. n-pentadecane

- 1. methyl-propane 2. butane 3. 2-methyl-butane 4. pentane 5. ter-butyl alcohol 6. methyl-pentane
- 7 3-methyl-nentane 8. hexane 9. dimethyl-pentane 10. cyclohexane 11. dimethyl-hexane
- 13. ethyl-benzene 14. p-xylene 15. m-xvlene 16. propyl-benzene 17. tetramethyl-octane 18 1 2 4-trimethyl-henzene 19. tri/tetramethyl-benzene isomers 20. naphthalene

12. toluene

UltraFast GC Columns

Short, narrow-bore columns for use with the Thermo Scientific TRACE GC UltraFast instrument

- Dramatically shorter analysis times
- Increase sample throughput by a factor of 20
- Lengthen column lifetimes

Applications:

- Chemical
- Petrochemical
- Environmental
- Flavors and fragrances

UltraFast GC Columns

Phase	ID (mm)	Length (m)	Film Thickness (µm)	Uses	Cat. No.	Quantity
UFC-1	0.10	5	0.1	General	UFMC00001010401	1 Each
	0.32	2.5	0.1	ASTM D-2887	UFMC00000070401	1 Each
		5	0.1	ASTM D-2887	UFMC00001070401	1 Each
		5	0.25	ISO 9377-2	UFMC00001070404	1 Each
		5	0.5	General	UFMC00001070907	1 Each
		10	3.0	ASTM D-3710	UFMC00002070414	1 Each
UFC-5	0.10	2.5	0.4	General	UFMC00100000000	1 Each
		5	0.4	General	UFMC00200000000	1 Each
		5	0.4	General	UFMC00501010006	1 Each
		5	0.1	General	UFMC00300000000	1 Each
		10	0.1	General	UFMC00002010601	1 Each
		10	0.4	General	UFMC00002010006	1 Each
		10	0.4	General	UFMC00502010006	1 Each
UFC-1701	0.10	5	0.1	General	UFMC00400000000	1 Each
JFC-WAX	0.10	5	0.1	FAMES, Essential Oils	UFMC00001010501	1 Each
		5	0.2	General	UFMC00001010503	1 Each
JFC-200	0.18	10	0.4	Alcohols, Ketones	UFMC00002030306	1 Each
JFC-264	0.10	10	0.5	Volatiles	UFMC00002010207	1 Each
JFC-23	0.15	10	0.15	FAMEs	UFMC00002020802	1 Each
	0.18	10	0.2	FAMEs	UFMC00002030603	1 Each
JFC-BioDiesel	0.32	5	0.5	BioDiesel	UFMC00001070600	1 Each
JFC-M1	0.10	2.5	0.4	General	UFMC00000010906	1 Each
	0.32	5	0.25	General	UFMC00001070904	1 Each
JFC-FFAP	0.25	10	0.25	FFAP	UFMC00091025250	1 Each
UFC-POR Ω					UFMC00002060614	1 Each

TracePLOT TG-BOND Alumina GC Columns: Na₂SO₄ and KCl Deactivation

Optimized for linear and quantitative analysis of polar unsaturated hydrocarbons

- Strong bonding to prevent particle generation suits these columns in valve-switching operations without damage to injection and detection systems from particle release
- Columns to which water has adsorbed may be regenerated to restore full efficiency and selectivity
- Each column has been tested to ensure proper film thickness (1,3-butadiene), selectivity (propadiene and methyl acetylene), resolution (trans-2-butene and 1-butene) and coating efficiency (1,3-butadiene)

TracePLOT TG-BOND Alumina GC Columns, Na₂SO₄ and KCl Deactivation

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
Na ₂ SO ₄ Deac	tivation			
0.32	30	5	26001-6020	1 Each
	50	5	26001-6050	1 Each
0.53	30	10	26001-6080	1 Each
	50	10	26001-6110	1 Each
KCI Deactiva	tion			
0.32	30	5	26002-6020	1 Each
	50	5	26002-6050	1 Each
0.53	30	10	26002-6080	1 Each
	50	10	26002-6110	1 Each

Applications:

- C1-C5 hydrocarbons
- Unsaturated hydrocarbon isomers

- Alumina-PLOT
- AT-Alumina
- CP-AI2O3/KCI
- CP-AI2O3/Na₂SO₄
- GS-Alumina
- GS-Alumina KCI
- HP PLOT M
- HP PLOT S
- Rt-Alumina BOND (KCI)
- Rt-Alumina BOND (Na₂SO₄)

TracePLOT TG-BOND Msieve 5A GC Columns

Designed for separation of Ar/O₂ and other permanent gases

- Specially designed coating and deactivation procedures for chromatographic efficiency and the integrity of the coating porous layer
- Deactivation process yields a sharp peak for CO elution rather than the tailing commonly seen in other columns
- High retention of molecular sieve permits separation of permanent gases at temperatures above ambient
- Uniform particles remain adherent to the tubing even following continuous valve-cycling

TracePLOT TG-BOND Msieve 5A GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.32	15	30	26003-6010	1 Each
	30	30	26003-6040	1 Each
0.53	15	50	26003-6070	1 Each
	30	50	26003-6100	1 Each
	50	50	26003-1630	1 Each

Applications:

- Permanent gases
- Refinery or natural gases

- GS-Msieve
- HP PLOT Molsieve
- CP-Molsieve 5A
- Molsieve 5A
- AT-Molsieve
- PLT-5A
- Rt-Msieve 5A

TracePLOT TG-BOND Q GC Columns

Non-polar columns incorporating particles to the walls of the tubing for essentially no particle release

- Non-polar 100% divinyl benzene phase
- Particles incorporated to the walls of the tubing for essentially no particle release

TracePLOT TG-BOND Q GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.32	15	10	26004-6000	1 Each
	30	10	26004-6030	1 Each
0.53	15	20	26004-6060	1 Each
	30	20	26004-6090	1 Each

Applications:

- C1 to C3 isomers and alkanes up to C12
- Separation of CO_2 , methane and $O_2/N_2/CO$
- Analysis of oxygenated compounds and solvents

Similar to:

- CP-PoraPLOT Q
- Rt-Q-BOND
- CP-PoraBond Q
- Supel-Q-Plot
- AT-Q

TracePLOT TG-BOND Q+ GC Columns

Intermediate polarity columns incorporating particles to the walls of the tubing for essentially no particle release

- Intermediate polarity, porous divinyl benzene homopolymer
- Particles incorporated to the walls of the tubing for essentially no particle release

TracePLOT TG-BOND Q+ GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.32	15	10	26005-6000	1 Each
	30	10	26005-6030	1 Each
0.53	15	20	26005-6060	1 Each
	30	20	26005-6090	1 Each

Applications:

• Separation of ethane, ethylene and acetylene to baseline

- GS-Q
- Rt-QS-BOND

TracePLOT TG-BOND S GC Columns

Mid-polarity columns incorporating particles to the walls of the tubing for essentially no particle release

- Mid-polarity, divinylbenzene 4-vinylpyridine solid phase
- Particles incorporated to the walls of the tubing for essentially no particle release

TracePLOT TG-BOND S GC Columns

ID (mm)	Length (m)	Film Thickness (µm)	Cat. No.	Quantity
0.32	15	10	26006-6000	1 Each
	30	10	26006-6030	1 Each
0.53	15	20	26006-6060	1 Each
	30	20	26006-6090	1 Each

Applications:

• Non-polar and polar compounds

Similar to:

- CP-PoraPLOT S
- Supel-G45
- Rt-S-BOND

TracePLOT TG-BOND U GC Columns

Polar columns incorporating particles to the walls of the tubing for essentially no particle release

- Polar, divinylbenzene ethylene glycol/dimethylacrylate phase
- Particles incorporated to the walls of the tubing for essentially no particle release

TracePLOT TG-BOND U GC Columns

ID (mm)	Length (m)	Film Thickness (μm)	Cat. No.	Quantity
0.32	15	10	26007-6000	1 Each
	30	10	26007-6030	1 Each
0.53	15	20	26007-6060	1 Each
	30	20	26007-6090	1 Each

TracePLOT Particle Traps for GC Instruments

Provides a safeguard from dislodged particles entering the detector

• Provides a safeguard from dislodged particles entering the detector

TracePLOT Particle Traps for GC Instruments

Description	ID (mm)	Cat. No.	Quantity
PLOT Particle Trap 2.5m x 0.32mm	0.32	60180-860	1 Each
PLOT Particle Trap 2.5m x 0.53mm	0.53	60180-861	1 Each

Applications:

Analysis of polar and non-polar compounds

- HP-PLOT U
- Rt-U-BOND
- CP-PoraPLOT U
- CP-PoraBOND U
- Supel-N PLOT

GC Accessories

Click-On Inline Filters

Easy-to-use format eliminates contamination

- Pure gas output 99.9999% or 6.0 grade
- No carrier gas line contamination during filter change
- Easy and fast replacement without the need for tools
- No risk of overtightening fittings
- Reuseable end fittings reduce cost of clean gas: remain installed during filter replacement
- TUEV approved
- Maximum pressure 11 bar (160 psi)
- Maximum flow 25L/min.
- Combi filter removes oxygen and moisture, or moisture and hydrocarbons
- Triple filter removes oxygen, moisture and hydrocarbons

Click-On Inline Filters	For Gas	Indicator Change	Filter Capacity
Moisture	Inert carrier, He, H ₂ , N ₂ , AR, Air		21g H ₂ 0
Oxygen	Inert carrier, He, H ₂ , N ₂ , AR		3L O ₂
Hydrocarbon	Inert carrier, He, H ₂ , N ₂ , AR, Air		36g (as n-butane)
Combi – Moisture, Oxygen	Inert carrier, He, H ₂ , N ₂ , AR		10g H ₂ O, 1.5L O ₂
Combi – Moisture, Hydrocarbons	Inert carrier, He, H ₂ , N ₂ , AR, Air		10g H₂O, 18g HCs (as n-butane)
Triple – Moisture, Oxygen, Hydrocarbons	Inert carrier, He, H ₂ , N ₂ , AR		6g H ₂ O, 1L O ₂ , 12g HCs (as n-butane)
Triple— Moisture, Oxygen, Hydrocarbons — He preconditioned for GC/MS	Не		6g H ₂ O, 1L O ₂ , 12g HCs (as n-butane)
Indicating Triple — Moisture, Oxygen, Hydrocarbons — He preconditioned for GC/MS	Не	Red to White Purple to Green	0.1g H ₂ O, 100mL O2, 0.07HCs (as n-butane)

Click-On Inline Filters

Туре	Cat No.	Quantity
Moisture Filter	60180-801	1 Each
Oxygen Filter	60180-802	1 Each
Hydrocarbon Filter	60180-803	1 Each
Combi – Moisture, Oxygen	60180-804	1 Each
Combi – Moisture, Hydrocarbons	60180-843	1 Each
Triple – Moisture, Oxygen, Hydrocarbons	60180-805	1 Each
Triple — Moisture, Oxygen, Hydrocarbons — He preconditioned for GC/MS	60180-806	1 Each
Indicating Triple – Moisture, Oxygen, Hydrocarbons – He preconditioned for GC/MS	60180-808	1 Each

Connectors and Accessories

Description	Cat No.	Quantity
Brass End Fitting, 0.125in.	60180-809	2 Pack
Steel End Fitting, 0.125in.	60180-810	2 Pack
Brass End Fitting, 0.25in.	60180-811	2 Pack
Steel End Fitting, 0.25in.	60180-812	2 Pack
Double Ended Connector to connect Filter to Indicator	60180-813	1 Each
Replacement O-Rings	60180-833	1 Each
Wall Mounting Clamp	60180-834	4 Pack

Super Clean Cartridge Filters

Replace easily without tools

- 99.9999% pure gas (or 6.0 grade) output
- No carrier gas line contamination during cartridge change
- Cost effective
- TUEV approved
- Max. pressure 11 bar (160 psi)
- Max. flow 7L/min.

Super Clean Cartridge Filter	For Gas Type	Indicator Change	Filter Capacity
Moisture	Inert carrier, He, H ₂ , N ₂ , AR, Air	Gray to White	7.2g H ₂ O
Oxygen	Inert carrier, He, H ₂ , N ₂ , AR	Green to Gray	1L O ₂
Hydrocarbon	Inert carrier, He, H2, N2, AR, Air		24g HCs (as n-butane)
Combi	Inert carrier, He, H2, N2, AR, Air	Purple to Green	3.5g H₂O, 12g HCs (as n-butane)
Triple	Inert carrier, He, H ₂ , N ₂ , AR	Orange to Gray Purple to Green	1.8g H_2O , 500mL O_2 , 7g HCs (as n-butane)

Super Clean Cartridge Filters

Туре	Base Included	Cat. No.	Quantity
Indicating Moisture Cartridge Filter	No	60180-819	1 Each
Indicating Oxygen Cartridge Filter	No	60180-820	1 Each
Hydrocarbon Cartridge Filter	No	60180-821	1 Each
Indicating Combi Filter – Moisture, Hydrocarbons	No	60180-826	1 Each
Indicating Triple Filter – Moisture, Oxygen, Hydrocarbons	No	60180-824	1 Each
Indicating Triple Filter — Moisture, Oxygen, Hydrocarbons — He preconditioned for GC/MS	No	60180-825	1 Each
Triple Filter – Moisture, Oxygen, Hydrocarbons – He preconditioned for GC/MS	Yes	60180-830	1 Each
Indicating Triple Filter – Moisture, Oxygen, Hydrocarbons – He preconditioned for GC/MS	Yes	60180-829	1 Each
3 Cartridge Pack – contains 1 x Triple Filter and 2 x Combi Filter (Moisture, Hydrocarbons)	No	60180-822	1 Each
4 Cartridge Pack – contains 1 x Moisture Filter, 1 x O_2 Filter and 2 x Hydrocarbon Filter	No	60180-823	1 Each
4 Cartridge Pack $-$ contains 1 x Moisture Filter, 1 x 0_2 Filter and 2 x Hydrocarbon Filter	Yes	60180-827	1 Each
3 Cartridge Pack – contains 1 x Triple Filter and 2 x Combi Filter (Moisture, Hydrocarbons)	Yes	60180-828	1 Each
Twin Hydrocarbon Filters for High Flow Base Plate for LC/MS – no Indicator	No	60180-831	1 Each
Twin Moisture Filters for High Flow (Air Generators)	No	60180-832	1 Each
High Flow Pack of 2 x Hydrocarbon Filters for LC/MS — no Indicator	No	60180-839	1 Each
High Flow Pack of 2 x Hydrocarbon Filters for LC/MS — with Indicator	No	60180-840	1 Each
High Flow Pack of 2 x Moisture Filters for LC/MS – with Indicator	No	60180-841	1 Each

Super Clean Cartridge Filter Baseplates

One-time installation procedure

- Can be configured to the individual user requirements
- Needle valves ensure gas line is not contaminated during cartridge change *Filters are not included.*

Туре	For Use With	For Gas
Single Base	Triple Filter	Carrier Gas Only
Dual Base	2 x Combi Filter	Air and Fuel Gas
Triple Base	Triple and 2 x Combi Filter	Carrier, Make-Up, and Fuel Gas
Four-position Base	Moisture, Oxygen, 2 x Hydrocarbon	High Capacity Carrier, Fuel, Make Up
Two-position, High-flow Base	N₂ in LC/MS, H₂O in H₂/air generators	Carrier, Make Up and Fuel

Super Clean Cartridge Filter Baseplates/Manifolds

Туре	Cat. No.	Quantity
Single Base	60180-814	1 Each
Dual Base	60180-815	1 Each
Triple Base	60180-817	1 Each
Two-position, High-flow Base	60180-816	1 Each
Four-position Base	60180-818	1 Each
O-rings for Base Plates	60180-837	20 Pack
Flush Cap	60180-838	2 Pack

Search thousands of applications in our chromatography resource center www.thermoscientific.com/crc

GC Septa

Quality materials for all applications

- Low bleed septa ideal for MS applications
- Excellent mechanical properties
- Maximum temperature 400°C

TR-Green Septa

- Long injection lifetime
- Low injection port adhesion
- Maximum temperature 400°C

Marathon Septa

- Pre-pierced for reliable performance
- Up to 400 injections per septa
- Maximum temperature 400°C

TR-Blue Septa

- General purpose septa
- Easy to penetrate
- Maximum temperature 200-250°C

Septa

Material	ID (mm)	Cat. No.	Quantity
BTO	9	31303240	50 Pack
BTO	11	31303233	50 Pack
BTO	11.5	31303230	50 Pack
BTO	12.7	31303228	50 Pack
BTO	17	31303211	50 Pack
TR-Green	9	313G3240	50 Pack
TR-Green	11	313G3230	50 Pack
TR-Green	12	313G3228	50 Pack
TR-Green	17	313G3211	50 Pack
Marathon	9	313P3240	50 Pack
Marathon	11	313P3233	50 Pack
Marathon	11.5	313P3230	50 Pack
Marathon	17	313P3211	50 Pack
TR-Blue	9	313B3240	50 Pack
TR-Blue	11	313B3233	50 Pack
TR-Blue	11.5	313B3230	50 Pack
TR-Blue	17	313B3211	50 Pack

Injection Port Liners for Thermo Scientific Instruments

Highly deactivated and produced to exacting tolerances to ensure a high degree of reproducibility

Liners for Thermo Scientific TRACE 1300 Series SSL Instruments

	Injection Type	ID x OD (mm)	Length (mm)	Packing	Cat. No. 5 Pack	Cat No. 25 Pack
	Direct Straight Liner	1.2 x 6.3	78.5	No	453A1335	453A2332
	Split Straight Liner	4 x 6.3	78.5	Quartz Wool	453A2265	453A1262
	Split Straight Liner	4 x 6.3	78.5	No	453A1295	453A2292
	Split/Splitless FocusLiner	4 x 6.3	78.5	Quartz Wool	453A1255	453A1252
X X	Split/Splitless FocusLiner with Single Taper	4 x 6.3	78.5	Quartz Wool	453A1315	453A1312
	Split/Splitless Liner with Single Taper	4 x 6.3	78.5	No	453A1345	453A2342
	Split/Splitless Liner with Double Taper	4 x 6.3	78.5	No	453A1355	453A2352
—————————————————————————————————————	Split/Splitless Liner w/ Recessed Gooseneck	4 x 6.3	78.5	Quartz Wool	453A1305	453A2302
	Splitless Liner with Single Taper	4 x 6.3	78.5	Quartz Wool	453A1925	N/A
	Split/Splitless Mini-Lam Liner	4 x 6.3	78.5	No	453A2009	N/A
	Split/Splitless Mixed Liner Sample Pack	Mixed	Mixed	Mixed	453TH002	N/A

Liners for Thermo Scientific TRACE 1300 Series and TRACE ULTRA PTV Instruments

Injection Type	ID x OD (mm)	Length (mm)	Packing	Cat. No. 2 Pack	Cat. No. 5 Pack	Cat. No. 25 Pack
PTV Straight Liner	1 x 2.75	120	No	N/A	45352054	45354054
PTV Straight Liner	2 x 2.75	120	No	N/A	45352057	45354057
PTV Straight Liner (deactivated)	2 x 2.75	120	No	45322045	N/A	N/A
PTV Liner with Sintered Lining	1 x 2.75	120	No	N/A	45352060	N/A
PTV Liner with Three Baffles	1 x 2.75	120	No	N/A	45352062	45354062
PTV Siltek Metal Liner	1 x 2.75	120	No	45322046	N/A	N/A
PTV Siltek Metal Liner	2 x 2.75	120	No	45322044	N/A	N/A
PTV Siltek Metal Liner	2 x 2.75	120	Wool	45322056	N/A	N/A
 PTV Baffle Liner (Siltek)	2 x 2.75	120	No	N/A	453T2120	N/A
PTV Split Liner with Recessed Gooseneck	2 x 2.75	120	Quartz Wool	N/A	45352070	N/A
PTV Silcosteel Liner for OC	1 x 2.75	120	No	45322052	N/A	N/A
PTV Mixed Liner Sample Pack	Mixed	Mixed	Mixed	N/A	453TH003	N/A

Liner Sealing Rings for Thermo Scientific Instruments

Description	Cat. No.	Quantity
Liner Sealing Ring for TRACE 1300 Series GC SSL Injector	29001312	1 Each
Liner Sealing Ring for TRACE 1300 Series GC PTV Injector	29001318	1 Each
Viton Liner Sealing Ring for TRACE 1300 Series GC	2900A241	10 Pack
Liner sealing Ring for TRACE and FOCUS GC SSL Injector	29033406	10 Pack
Liner sealing Ring for TRACE PTV Injector	29013417	10 Pack

Liners for Thermo Scientific TRACE ULTRA and FOCUS SSL Instruments

	Injection Type	ID x OD (mm)	Length (mm)	Packing	Cat. No. 5 Pack	Cat No. 25 Pack
	Split Straight Liner	5 x 8	105	No	45350030	45354030
	Split Straight Liner	3 x 8	105	No	45350031	45354031
	Split Straight Liner	5 x 8	105	CarboFrit	453T2131	N/A
	Splitless Straight Liner	3 x 8	105	No	45350032	45354032
	Splitless Straight Liner	5 x 8	105	No	45350033	45354033
	Splitless Straight Liner	5 x 8	105	CarboFrit	453T2130	N/A
====	Splitless Straight Liner (Siltek)	3 x 8	105	No	453T2121	N/A
X	Split FocusLiner for 50mm Needle	5 x 8	105	Quartz Wool	453T1905	453T4905
	Splitless FocusLiner for 50mm Needle	5 x 8	105	Quartz Wool	453T2999	453T4999
	Splitless FocusLiner for 70mm Needle	5 x 8	105	Quartz Wool	453T2895	453T4895
	Baffle Liner	2 x 8	105	No	453T1001	N/A
:	Split/Splitless Straight Liner	0.75 x 2.75	105	No	45352083	N/A

Injection Port Liners for Agilent Instruments

Liners for Agilent Instruments

	Injection Type	ID x OD (mm)	Length (mm)	Packing	Cat. No. 5 Pack	Cat No. 25 Pack
	Direct Straight Liner	1.2 x 6.3	78.5	No	453A1335	453A2332
	Split Straight Liner	4 x 6.3	78.5	Quartz Wool	453A2265	453A1262
	Split Straight Liner	4 x 6.3	78.5	No	453A1295	453A2292
	Split/Splitless FocusLiner	4 x 6.3	78.5	Quartz Wool	453A1255	453A1252
	Split/Splitless FocusLiner with Single Taper	4 x 6.3	78.5	Quartz Wool	453A1315	453A1312
-	Split/Splitless Liner with Single Taper	4 x 6.3	78.5	No	453A1345	453A2342
	Split/Splitless Liner with Double Taper	4 x 6.3	78.5	No	453A1355	453A2352
	Split/Splitless Liner w/ Recessed Gooseneck	4 x 6.3	78.5	Quartz Wool	453A1305	453A2302
	Split/Splitless FAST FocusLiner	2.3 x 6.3	78.5	Quartz Wool	453A1285	453A2282
	Split/Splitless FAST FocusLiner with Single Taper	2.3 x 6.3	78.5	Quartz Wool	453A2375	453A1372
	Splitless Liner with Single Taper	4 x 6.3	78.5	Quartz Wool	453A1925	N/A
	Splitless Straight Liner	2.0 x 6.3	78.5	No	453A2275	N/A
×	Splitless Liner with Recessed Gooseneck	2.0 x 6.3	78.5	No	453A2325	N/A
	Cyclo/Single Gooseneck (Deactivated Metal)	5.2 x 6.3	78.5	No	453A2000	N/A
<u> </u>	Single Gooseneck (Deactivated Metal)	5.2 x 6.3	78.5	No	453A2001	N/A
	Cyclosplitter Liner (Deactivated Metal)	5.2 x 6.3	78.5	No	453A2002	N/A
	Split/Splitless Liner with Wool (Deactivated Metal)	5.2 x 6.3	78.5	No	453A2003	N/A
	Split/Splitless Mixed Liner Sample Pack	Mixed	Mixed	No	453AG001	N/A

Liner Sealing Rings for Agilent Instrument

Description	Cat. No.	Quantity
Graphite Liner Sealing Ring for Agilent Direct Straight Liners	290GA242	10 Pack
Graphite Liner Sealing Ring for Agilent SSL Liners	290GA243	10 Pack
Graphite Liner Sealing Ring for Agilent 2.0mm Liners	290GA244	10 Pack
Viton Liner Sealing Ring for Agilent SSL Injector	2900A241	10 Pack

Gold Inlet Base Seals

Gold plating provides a surface with exceptional inertness suitable for analysis of highly active compounds

- Precision machined to provide exceptional sealing properties
- Reduces activity (especially useful for analysis of pesticide, PCBs, phenols, etc.)
- High grade stainless steel providing reproducible seal
- Compatible with Thermo Scientific TRACE 1300 Series GC split/splitless injection ports
- Compatible with all Agilent GC 5890/6890/7890 split/splitless injection ports

Gold Inlet Base Seals

For Use With	ID (mm)	Cat. No.	Quantity
Single column installation	0.8	290GA081	10 Pack
Single column installation	0.8	290GA082	2 Pack
Dual column installation	1.2	290GA121	10 Pack
Dual column installation	1.2	290GA122	2 Pack

Gold Cross Inlet Base Seals

Gold plating provides a surface with exceptional inertness suitable for analysis of highly active compounds

- Precision machined to provide exceptional sealing properties
- Reduces activity (especially useful for analysis of pesticide, PCBs, phenols, etc.)
- High grade stainless steel providing reproducible seal
- Compatible with Thermo Scientific TRACE 1300 Series GC split/splitless injection ports
- Compatible with all Agilent GC 5890/6890/7890 split/splitless injection ports

Gold Cross Inlet Base Seals

ID (mm)	Cat. No.	Quantity
0.8	290GA084	10 Pack
0.8	290GA083	2 Pack

Siltek Inlet Base Seals

Siltek coating provides a surface with exceptional inertness suitable for analysis of highly active compounds

- Precision machined to provide exceptional sealing properties
- Reduces activity (especially useful for analysis of pesticides, PCBs, phenols, etc.)
- High grade stainless steel providing reproducible seal

Siltek-Treated Inlet Base Seals

ID (mm	Cat. No.	Quantity
8.0	290GA091	10 Pack
0.8	290GA092	2 Pack

Siltek Cross Inlet Base Seals

Siltek coating provides a surface with exceptional inertness suitable for analysis of highly active compounds

- Ideal for high-flow split applications
- Precision machined to provide exceptional sealing properties
- Reduces activity (especially useful for analysis of pesticides, PCBs, phenols, etc.)
- High grade stainless steel providing reproducible seal

Siltek-Treated Cross Inlet Base Seals

ID (mm)	Cat. No.	Quantity
0.8	290GA094	10 Pack
0.8	290GA093	2 Pack

Finger Tite Connectors

Easier fit, reliability and leak-free connections

Advantages over conventional graphite/polymer ferrules:

- Perfect metal-to-metal seal eliminates contamination and gives lower air/water background noise
- No need to retighten ferrules, as they expand and contract with the fitting over GC operating temperatures
- Easy to handle with the nut touchable even with a hot injector/detector
- No tools required
- Available for Thermo Scientific and Agilent GC instruments

Finger Tite Connectors for Thermo Scientific Instruments

Description	Cat. No.	Quantity
Female Nut	290ST130	5 Pack
Split/Splitless and MS Starter Kit	290ST131	1 Each
Split/Splitless and FID Starter Kit	290ST132	1 Each
Split/Splitless and MS Starter Kit for ISQ	290ST136	1 Each

Finger Tite Connectors for Agilent Instruments

Description	Cat. No.	Quantity
Male Nut	290SA130	5 Pack
Split/Splitless and MS Starter Kit	290SA131	1 Each
Split/Splitless and FID Starter Kit	290SA132	1 Each
Split/Splitless Injector Base Seal	290SA133	2 Pack

Finger Tite Ferrules

ID (mm)	For Use With	Cat. No.	Quantity
0.4	0.1-0.25mm ID columns	290S1132	10 Pack
0.5	0.32mm ID columns	290S1131	10 Pack

QCC (Quick Column Change)

Leak free column installation

- Leak free column installation to injector and detector
- Tool-free installation of analytical GC column
- Graphite ferrules
- Available for Thermo Scientific and Agilent GC instruments

Complete QCC Kits:

Includes:

- Injector adaptor
- Detector adaptor
- Tight nut (2 pack)
- Ferrules (2 each 0.25mm, 0.32mm, 0.53mm)
- Ceramic column cutter

Thermo Scientific QCC (Quick Column Change) for Thermo Scientific Instruments

Description	Cat. No.	Quantity
QCC Kit for GC/FID	60180-879	1 Each
QCC Kit for GC/TCD	60180-883	1 Each
S/SL Injector Adaptor	60180-880	1 Each
FID Detector Adaptor	60180-881	2 Pack
TCD Detector Adaptor	60180-884	1 Each
Silver Seals	60180-882	10 Pack
Tight Nut	60180-873	2 Pack
Graphite Ferrules 0.25mm	29053488	10 Pack
Graphite Ferrules 0.32mm	29053487	10 Pack
Graphite Ferrules 0.53mm	29053486	10 Pack

Thermo Scientific QCC (Quick Column Change) for Agilent Instruments

Description	Cat. No.	Quantity
QCC Kit for GC/FID	60180-870	1 Each
QCC Kit for GC/TCD	60180-871	1 Each
S/SL Injector Adaptor	60180-872	1 Each
FID Detector Adaptor	60180-877	1 Each
TCD Detector Adaptor	60180-878	1 Each
Tight Nut	60180-873	1 Each
Ferrules 0.25mm	60180-874	10 Pack
Ferrules 0.32mm	60180-875	10 Pack
Ferrules 0.53mm	60180-876	10 Pack

Ferrules

Wide range of choices for a wide range of instruments and applications

Thermo Scientific ferrules are available in three different materials and various dimensions to match the instrument and capillary column ID. The choice of material is dependent upon the use; guidelines are given in the table.

Material Type	Suitable for GC/MS	Temp Limit (°C)	Re-usable
Graphite	No	450	Yes
Graphite/Vespel	Yes	350	No
Stainless Steel (SilTite)	Yes	500	No

100% Graphite Ferrules

Thermo Scientific 100% graphite ferrules are a soft material that is porous to oxygen, making them suitable

for most applications except GC/MS interface connections. These easy-to-use ferrules form a soft grip with the column and provide a stable seal.

15% Graphite / 85% Vespel Ferrules

The mechanically robust 15% Graphite/85% Vespel ferrules have a long lifetime and are compatible with GC/MS. These

ferrules form a strong grip with the column and cannot be reused as they form a permanent seal with the column. They have a temperature limit of 350°C, but must be re-tightened after initial temperature cycles.

All varieties of ferrules are supplied in contaminant-free, individual blister packs, allowing removal of an individual item without risk of contamination to the other supplied items.

SilTite Metal Ferrules

SilTite metal ferrules and nuts are made from the same material and have the same thermal expansion coefficient.

The SilTite ferrule forms a strong, permanent, airtight seal around the capillary column, eliminating leaks. The base of the ferrule is flat and forms a perfect seal with the MS interface. The ferrule's temperature tolerance is well above the limit of the injector, MS interface or GC oven. Unlike other ferrules, SilTite Ferrules do not need re-tightening after installation.

Please also see syringes on page 3-109.

To select the most appropriate ferrule for your GC system, refer to the table below:

	100% Graphite	15% Graphite/ 85% Vespel	SilTite
Suitable for Thermo Scientific TRACE ULTRA SSL Injector	•	•	
Suitable for Thermo Scientific TRACE 1300/1310 & Agilent SSL Injectors	•	•	•
Suitable for Thermo Scientific TRACE ULTRA non-MS detectors	•	•	
Suitable for Thermo Scientific TRACE 1300/1310 & Agilent non-MS detectors	•	•	
Suitable for all Thermo Scientific & Agilent MS Detectors		•	•
Suitable for Thermo Scientific PTV Injector	•	•	

Ferrules for Thermo Scientific Instruments

For Use with	Material Type	Ferrule Size (Column ID) (mm)	Cat. No.	Quantity
Thermo Scientific TRACE 1300/1310	100 % Graphite	0.1-0.32	290GA139	10 Pack
SSL Injectors and non-MS detectors		0.45-0.53	290GA140	10 Pack
	15% Graphite/85% Vespel	0.1-0.25	290VA191	10 Pack
		0.32	290VA192	10 Pack
		0.53	290VA193	10 Pack
Capillary Column Nut for Injectors and non-MS Detectors	Stainless Steel		290BT242	5 Pack
Thermo Scientific TRACE Ultra SSL	100 % Graphite	0.1-0.25	29053488	10 Pack
Injectors and non-MS detectors		0.32	29053487	10 Pack
		0.53	29053486	10 Pack
	15% Graphite/85% Vespel	0.1-0.25	29033461	10 Pack
	•	0.32	29033460	10 Pack
		0.53	29033471	10 Pack
		Packed Column 1/8" OD	290VT168	10 Pack
		Packed Column 1/4" OD	290VT165	10 Pack
	15% Graphite/85% Vespel	0.1-0.25	290VT186	10 Pack*
	(3.4mm length)	0.32	290VT187	10 Pack*
		0.53	290VT188	10 Pack*
Brass Nut for Graphite/ Vespel Ferrules			290BT239	2 Pack
All Thermo Scientific PTV Injectors	100 % Graphite	0.1-0.25	29053488	10 Pack
		0.32	29053487	10 Pack
		0.53	29053486	10 Pack
Thermo Scientific MS detectors	15% Graphite/85% Vespel	0.1-0.25	29033496	10 Pack
		0.32	29033497	10 Pack
SilTite Kits for Thermo Scientific	SilTite Metal	0.1-0.25	290MT229	1 Each**
GC/MS Interface		0.32	290MT230	1 Each**
		0.53	290MT231	1 Each**
Replacement SilTite Ferrules	SilTite Metal	0.1-0.25	290MT221	10 Pack
for Thermo Scientific GC/MS		0.32	290MT222	10 Pack
Interface Kits		0.53	290MT223	10 Pack
		Replacement SilTite Nuts	290MT211	5 Pack
SilTite Kits for TRACE 1300 GC SSL	SilTite Metal	0.1-0.25	290MA215	1 Each**
Injectors		0.32	290MA216	1 Each**
	***************************************	0.53	290MA217	1 Each**
SilTite Nuts for MS Interface			290MA205	5 Pack
SilTite Nuts for SSL Injectors			290MA207	5 Pack

 $^{^{\}ast}$ Vespel Ferrules must be used in conjunction with brass nut part number 290BT239 ** SilTite Kits contain 2 SilTite nuts and 10 ferrules

Ferrules for Agilent Instruments

For Use with	Material Type	Ferrule Size (Column ID) (mm)	Cat. No.	Quantity
Agilent Injectors and non-MS	100 % Graphite	0.1-0.32	290GA139	10 Pack
detectors		0.45-0.53	290GA140	10 Pack
		Packed Column 1/8" OD	290GA108	10 Pack
		Packed Column 1/4" OD	290GA107	10 Pack
	15% Graphite/85% Vespel	0.1-0.25	290VA191	10 Pack
		0.32	290VA192	10 Pack
		0.53	290VA193	10 Pack
		Packed Column 1/8" OD	290VT168	10 Pack
		Packed Column 1/4" OD	290VT165	10 Pack
Capillary Column Nut for Injectors and non-MS Detectors	Stainless Steel		290BT242	5 Pack
Agilent MS detectors	15% Graphite/85% Vespel	0.1-0.25	29033496	10 Pack
		0.32	29033497	10 Pack
		0.53	290VP144	10 Pack
Capillary Column Nut	Brass		290BT240	5 Pack
for MS Detectors	Stainless Steel		290BT241	5 Pack
SilTite Kits for Agilent SSL injectors	SilTite Metal	0.1-0.25	290MA215	1 Each*
		0.32	290MA216	1 Each*
		0.53	290MA217	1 Each*
SilTite Kit for Agilent MS detectors	SilTite Metal	0.1-0.25	290MA194	1 Each**
		0.32	290MA195	1 Each**
		0.53	290MA196	1 Each**
Replacement SilTite Ferrules for all	SilTite Metal	0.1-0.25	290MA201	10 Pack
SilTite Kits		0.32	290MA202	10 Pack
		0.53	290MA203	10 Pack
SilTite Nuts for MS interface			290MA205	5 Pack
SilTite Nuts for SSL injectors			290MA207	5 Pack
Replacement Baseplate Seals			290MA227	2 Pack
			290MA228	10 Pack

^{*} Kit contains 2 nuts, 10 ferrules and 2 base seals ** Kit contains 2 nuts and 10 ferrules

SilTite µ-Union

The tiny connection for GC Columns

The SilTite μ -Union is a connector for GC capillary columns, giving zero dead volume. The product has low thermal mass – it is only 9mm in length and has a mass <0.5g. It is available in kits to connect columns from 0.1mm ID to 0.53mm ID.

- Zero dead volume giving optimized peak shapes
- FingerTite technology easy to install and leak-free
- Highly inert and robust

Each SilTite μ-Union kit contains the following:

- 5 x ferrules
- 2 x union fittings
- Installation jigs
- Installation instructions

SilTite µ-Union Kits

Column 1 ID (mm)	Column 2 ID (mm)	Cat. No.	Quantity
0.1-0.25	0.1-0.25	290SM301	1 Each
	0.32	290SM302	1 Each
	0.53	290SM303	1 Each
0.32	0.32	290SM304	1 Each
	0.53	290SM305	1 Each
0.53	0.53	290SM306	1 Each

SilTite μ-Union Ferrules

Column 1 ID (mm)	Column 2 ID (mm)	Cat. No.	Quantity
0.1-0.25	0.1-0.25	290SM401	10 Pack
	0.32	290SM402	10 Pack
	0.53	290SM403	10 Pack
0.32	0.32	290SM404	10 Pack
	0.53	290SM405	10 Pack
0.53	0.53	290SM406	10 Pack

SilTite μ-Union Replacement Union

•			
Column 1 ID (mm)	Column 2 ID (mm)	Cat. No.	Quantity
0.1-0.32	0.1-0.32	290SM321	1 Each
	0.53	290SM322	1 Each
0.53	0.53	290SM323	1 Each

Retention Gap Kits

Support Thermo Scientific gas chromatography consumables

- Length of deactivated fused silica tubing
- Mini-union
- 5 ferrules
- Kit contains one union and five ferrules

Retention Gap Kits

Description	Cat. No.	Quantity
Retention gap kit, 0.22 – 0.32mm, 2m ID (includes connectors)	260RG497	1 Each
Retention gap kit, 0.53mm, 2m ID (includes connectors)	260RG499	1 Each
Retention gap kit, 0.53mm, 5m ID (includes connectors)	260RG500	1 Each

Deactivated Silica Tubing

Description	Cat. No.	Quantity
Deactivated silica tubing, 0.32mm ID; 2m Length	260G498P	1 Each
Deactivated silica tubing, 0.53mm ID; 2m Length	260G499P	1 Each
Deactivated silica tubing, 0.25mm ID; 5m Length	260G495P	1 Each
Deactivated silica tubing, 0.32mm ID; 5m Length	260G496P	1 Each
Deactivated silica tubing, 0.53mm ID; 5m Length	260G500P	1 Each
Deactivated silica tubing, 0.53mm ID; 1m Length (Siltek)	260G401P	1 Each

Mini Capillary Unions

For Use With	Cat. No.	Quantity
0.32mm ID capillary GC column	290GU498	1 Each
0.53mm ID capillary GC column	290GU499	10 Pack

Capillary Column End Caps

Feature a universal fit to all GC capillary columns

- Eliminate column contamination caused by leaving a column unsealed or sealed with a septum
- Color-coordinated fittings ensure that the column is reinstalled the same way it came out
- Reusable

Description	Cat No.	Quantity
Capillary Column End Caps, Paired	260EC111	10 Pack

Capillary GuardGOLD Columns

Providing protection to the analytical column

- Protects against column contamination caused by non-volatile materials, extending the column lifetime
- Focuses target analytes at the head of the analytical column, leading to better chromatographic peak shape
- Highly deactivated to provide superior inertness, essential for analysis of active compounds.
- High maximum operating temperature of 360°C

Capillary GuardGOLD Columns

ID (mm)	Length (m)	Cat. No.	Quantity
0.18	2	26050-0218	1 Each
0.25	2	26050-0225	1 Each
0.32	2	26050-0232	1 Each
0.53	2	26050-0253	1 Each
0.18	5	26050-0518	1 Each
0.25	5	26050-0525	1 Each
0.32	5	26050-0532	1 Each
0.53	5	26050-0553	1 Each
0.18	10	26050-1018	1 Each
0.25	10	26050-1025	1 Each
0.32	10	26050-1032	1 Each
0.53	10	26050-1053	1 Each

SilTite Capillary Column Connectors

For use with capillary GC columns

- For fused silica capillary columns
- Glass lined for inertness
- Low thermal mass

SilTite Capillary Column Connectors

Column ID (mm)	2nd Column ID (mm)	Pack Contents	Cat. No.	Quantity
0.1 - 0.25	0.1 – 0.53	1 Connector, 2 Nuts and 5 Ferrules (0.1 – 0.25mm ID)	290MU498	1 Each
0.32	0.32 - 0.53	1 Connector, 2 Nuts and 5 Ferrules (0.32mm ID)	290MU499	1 Each
0.45 - 0.53	0.45 - 0.53	1 Connector, 2 Nuts and 5 Ferrules (0.45 – 0.53mm ID)	290MU500	1 Each
Replacement SilTite C	Connector Nuts [†]	5 Nuts	290MN211	1 Each

[†] SilTite nuts must be used with SilTite ferrules

SilTite Ferrules

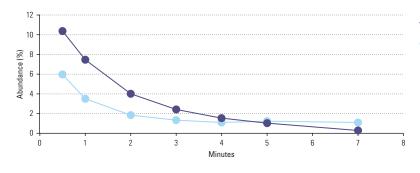
Column ID (mm)	Cat. No.	Quantity
0.25	290MF229	0 Pack
0.32		0 Pack
0.53		0 Pack

GC Capillary Connectors

Description	Cat. No.	Quantity
Universal Cap Connector	64000-001	10 Pack
Y Cap Connector	64000-002	1 Each

SWAP-IT GC-MS Interface System

Easy to install for quick column changeovers


The SWAP-IT GC-MS Interface provides a powerful tool for switching capillary columns without the need to vent the MS.

- Specially deactivated, robust stainless steel transfer capillary provides an interface between the analytical column and the MS detector
- Small ID of transfer capillary ensures exposure to air and water is reduced to a minimum during disconnection of the analytical column
- The system works without the requirement for additional He-purge
- Finger-tight connections make exchanging the analytical column quick and easy without the need for tools

SWAP-IT GC MS Interface System

Description	Cat. No.	Quantity
For Thermo Scientific Instruments (ISQ GC-MS, TSQ 8000 GC-MS/MS)		
SWAP-IT GC-MS Interface Kit: SWAP-IT GC-MS Interface, Nuts, Ferrules, Accessories	60180-791	1 Each
SWAP-IT GC-MS Interface, SWAP-IT only	60180-793	1 Each
For Thermo Scientific Instruments (DSQ GC-MS, DSQ II GC-MS, Polaris Q GC-MS, ITQ GC-	MS only)	
SWAP-IT GC-MS Interface Kit: SWAP-IT GC-MS Interface, Nuts, Ferrules, Accessories	60180-790	1 Each
SWAP-IT GC-MS Interface, SWAP-IT only	60180-792	1 Each
Transfer Line Nut	290SG001	1 Each
Graphite/Vespel Ferrule for Transfer Line	290SG020	10 Pack
For Agilent Instruments		
SWAP-IT GC-MS Interface Kit: SWAP-IT GC-MS Interface, Nuts, Ferrules, Accessories	60180-794	1 Each
SWAP-IT GC-MS Interface, SWAP-IT Only	60180-796	1 Each
Transfer Line Nut	290SG004	1 Each
Graphite/Vespel Ferrule for Transfer Line	290SG021	10 Pack
SWAP-Tight Nut and Adaptor for S/SL Injector	290SG003	1 Each
Accessories		
SWAP-Tight Nut	290SG002	1 Each
SWAP-Tight Ferrules, Blank	290SG000	10 Pack
SWAP-Tight Ferrules, 0.1 – 0.25mm	290SG025	10 Pack
SWAP-Tight Ferrules, 0.32mm	290SG032	10 Pack

Mass 28, nitrogen

Mass 18, water

Removal of water and nitrogen to levels less than 2% is obtained within 3-4 minutes after column replacement

3-Port SilFlow Device

Switch your GC column without the need to vent

- Allows column switching in GC/MS without the need to vent
- Utilizes a make up gas module and a microfluidic device
- SilTite FingerTite fittings for easy set up and a reliable seal

3-Port SilFlow Device

Description	Cat. No.	Quantity
3 Port SilFlow MCD (0.25/0.32)	60201-398	1 Each

3-Port SilFlow Repacement Parts

Description	Cat. No.	Quantity
SilFlow Fingertight Ferrules for 0.25mm ID Columns	29063466	10 Pack
SilFlow Fingertight Ferrules for 0.32mm ID Columns	29063467	10 Pack
SilTite FingerTite Ferrule 0.4mm Hole	290S1132	10 Pack
SilTite FingerTite Slotted Nut	290ST130	5 Pack
SilFlow Fingertight Tool	60201-401	1 Each
SilFlow Nuts	290SF302	10 Pack
Blanking Ferrule	290ST414	5 Pack
170μm Deactivated Tubing 0.363mm OD 60cm Length	60201-390	1 Each
75µm Untreated Fused Silica Tubing 0.363mm OD 30cm Length	60201-391	1 Each
170μm Deactivated Tubing 0.363mm OD 120cm Length	60201-394	1 Each
75µm Untreated Fused Silica Tubing 0.363mm OD 80cm Length	60201-395	1 Each

General Gas Chromatography Tools

GC Tubing for plumbing GC systems

GC Tubing

Material	OD (in)	ID (in)	Length (ft)	Cat. No.	Quantity
Copper	1/8	0.065	50	60181-632	1 Each
	1/4	0.19	50	60181-633	1 Each
Stainless Steel	1/16	0.01	25	60181-634	1 Each
		0.02	25	60181-635	1 Each
		0.03	25	60181-636	1 Each
		0.04	25	60181-637	1 Each
	1/8	0.085	25	60181-638	1 Each
	1/4	0.21	25	60181-639	1 Each

General Gas Chromatography Tools

Support GC applications

General Gas Chromatography Tools

3		
Description	Cat. No.	Quantity
Straight-Tipped Forceps	60180-770	1 Each
Angle-Tipped Forceps	60180-771	1 Each
Pin Vice	60180-772	1 Each
Probes	60180-774	1 Each
Inspection Mirror	60180-775	1 Each
Pick-Up Tool	60180-777	1 Each
0.35mm Drill Bit	60180-779	1 Each
0.45mm Drill Bit	60180-780	1 Each
0.70mm Drill Bit	60180-781	1 Each
Adjustable Spanner	60180-782	1 Each
Tri-Scale Ruler	60180-783	1 Each
Shortix Capillary Column Cutter	60180-835	1 Each
Shortix Capillary Column Cutter Repair Kit	60180-836	1 Each
Ceramic Column Cutter	60201-318	1 Each

GC Tool Kits

Includes: Wrench sets, flashlight, brushes, mini-drill set and other tools for maintaining your GC system performance

GC Tool Kits

Description	Cat. No.	Quantity
Capillary Tool Kit for Thermo Scientific GCs	60180-784	1 Each
Capillary Tool Kit for Agilent GCs	60180-786	1 Each

GC Installation Kit

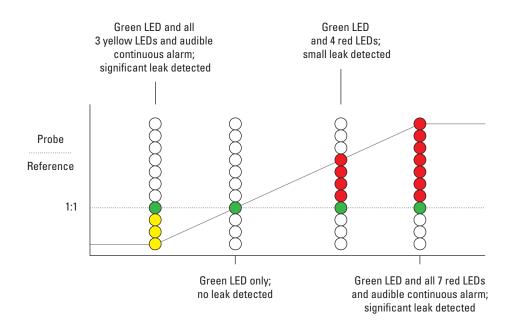
Includes:

- Tubing cutter
- 1/8 x 1/4in. reamer
- 7/16in. wrench
- 1/2in. wrench
- 1/8in. brass tees, 4
- 1/8in. brass nuts, 10
- Brass front and back ferrules, 10
- 15.2m instrument-grade, cleaned 1/8in. copper tubing

GC Installation Kit

Description	Cat. No.	Quantity
GC Installation Kit	60180-888	1 Each

GLD Pro Gas Leak Detector


Aids in quickly locating and identifying gas leaks

The Thermo Scientific™ GLD Pro™ Gas Leak Detector is specifically designed for use with gas chromatography instruments. Detection of leaks allows the user to reduce detector noise, provide a stable baseline, reduce carrier gas by minimizing waste, and maximize the lifetime of the analytical column by minimizing the presence of oxygen and other impurities in the carrier gas.

- Suitable for detection of a wide range of laboratory gases
- Push button on/off switch
- Push button zero function
- Automatic shutoff (5 minutes)
- LED light indicator for intensity of leak
- Rechargable battery (up to 6 hrs. operation)
- Durable storage case
- Probe holder
- One year warranty

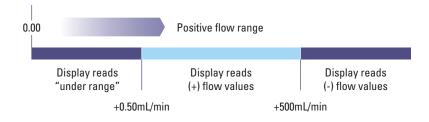
GLD Pro Gas Leak Detector

Description	Cat. No.	Quantity
GLD Pro Leak Detector	66002-001	1 Each
Small Probe Adaptor	66002-003	1 Each
Soft-sided Carry Case (Leak Detector not included)	66002-002	1 Each

GFM Pro Electronic Flowmeter

Measure and monitor flow quickly and efficiently

The Thermo Scientific™ GFM Pro™ Flowmeter is specifically designed for use with gas chromatography instruments. This versatile product is an electronic device capable of measuring volumetric flow for all types of gases. Real-time measurements can be made for various types of flow paths including continually changing gas types.


The unit is portable so it can be hand-held or it also has an optional stand for bench-top convenience.

- Compact ergonomic design features side grips for added durability
- Easy-to-use interface features over-range warning indicator and auto-shutoff
- Measurement range of 0.5-500mL/min
- Accuracy of +/- 2% of flow or +/- 0.2mL/min, whichever is greater
- Data output via USB port
- Calibration: traceable to NIST primary standards
- Explosion-proof rating for flammable and explosive gases
- CE certified
- Uses 2-AA batteries
- Re-calibration service available

GFM PRO CONTROL CON

GFM Pro Electronic Flowmeter

Description	Cat. No.	Quantity
GFM Pro Flowmeter	66002-010	1 Each
Soft-sided Carry Case (Flowmeter not included)	66002-002	1 Each
GFM Pro Flowmeter Re-Calibration	66002-GFMCAL	1 Each

GC Syringes for Thermo Scientific Instruments

Removable Needle, Gas Tight Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Туре	Cat No.	Quantity	Replacement Needle Cat. No.	Quantity	Instrument Compatibility
10	75	31	Cone	Manual OC	36500520	1 Each	36550046	2 Pack	
100	50	23	Side hole	See Note	36520050	1 Each	36550040	2 Pack	TriPlus, AS200/ AS800
100	50	23	Cone	LV Splitless	36500495	1 Each	36566485	5 Pack	TriPlus, AS2000, AS200/AS800
250	80	26	Cone	LVOC	36500490	1 Each	36566480	5 Pack	TriPlus, AS2000
250	50	23	Side hole	See Note	36520051	1 Each	36550040	2 Pack	TriPlus, AS2000, AS200/AS800
1000	50	23	Bevel	•••••	365K3041	1 Each	365RN235	5 Pack	AS200/AS800

Removable Needle Syringes

Volume (μL)	Length (mm)	Gauge	Tip Style	Туре	Cat No.	Quantity	Replacement Needle Cat. No.	Quantity	Instrument Compatibility
5	75	31	Cone	Manual OC	36500510	1 Each	36550045	2 Pack	
10	50	26	Cone		365D1841	1 Each	365RN362	2 Pack	AS3000, AS2000
10	50	23	Cone		365D3731	1 Each	365RN372	2 Pack	AS3000, AS2000, AS200/ AS800
50	50	23	Cone	LV Splitless	36503015	1 Each	36566485	5 Pack	AS2000

Syringe 36520051 is to be used when performing PTV/LVI injections with a dedicated liner for thermal labile compounds (liner 45352060). Compatible with Merlin Microseal device installed on BEST PTV and with AS2000 and TriPlus autosamplers for liquids.

Fixed Needle, Gas Tight Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Туре	Cat No.	Quantity	Instrument Compatibility
10	50	23	Cone		365D3741	1 Each	AS2000
100	50	25	Bevel		365H2321	1 Each	AS200/AS800
250	50	25	Bevel		36512561	1 Each	AS200/AS800

Fixed Needle Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Туре	Cat No.	Quantity	Instrument Compatibility
5	50	26	Cone	Split/PTV	36504047	1 Each	TriPlus
5	50	23	Cone		365C3701	1 Each	AS3000, AS2000, AS200/AS800
5	50	26	Cone	Split/PTV	36500505	1 Each	AS3000, AS2000
5	80	26	Cone	Splitless and OC	36502025	1 Each	TriPlus
10	50	26	Cone		365D3711	1 Each	AS3000, AS200, AS200/AS800
10	50	26	Cone		365D1856	6 Pack	AS300, AS2000, AS200/AS800
10	50	25	Cone	Split/PTV	36500525	1 Each	TriPlus, AS3000, AS2000, AS200/ AS800
10	50	23	Cone	PTV/SSL Split	36520060	1 Each	TriPlus, AS300, AS2000, AS200/ AS800
10	80	23	Cone	Merlin Valve SSL Splitless	36520061	1 Each	TriPlus, AS2000
10	50	23-26	Cone	OC in PTV Merlin Valve	36500580	1 Each	TriPlus, AS2000
10	80	26	Cone	OC and Splitless	36502019	1 Each	TriPlus, AS2000

Plunger-in-Needle Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Туре	Cat No.	Quantity	Instrument Compatibility
0.5	50	23	Cone	Split/PTV	36504045	1 Each	TriPlus, AS3000
0.5	75	31	Cone	Manual OC	36500500	1 Each	
0.5	80	26	Cone	Splitless and OC	36504046	1 Each	TriPlus

GC Syringes for Thermo Scientific TriPlus RSH Autosampler

Removable Needle Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Туре	Cat. No.	Quantity
0.5	57	23	Cone	Split	365A0241	1 Each
 1	57	23	Cone	Split	365B0251	1 Each

Fixed Needle Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Туре	Cat. No.	Quantity
5	85	23s	Cone	Merlin Valve SSL Injector: Splitless	365C0221	1 Each
	57	23s	Cone	Merlin Valve Injector: PTV and split	365C0231	1 Each
	85	26s	Cone	Splitless and OC	365C0241	1 Each
	57	26s	Cone	Split and PTV	365C0251	1 Each
10	85	23s	Cone	Merlin Valve SSL Injector: Splitless	365D0261	1 Each
	57	23s	Cone	Merlin Valve Injector: PTV and split	365D0271	1 Each
	85	26s	Cone	Splitless and OC	365D0281	1 Each
	57	26s	Cone	Split and PTV	365D0291	1 Each

Fixed Needle, Gas Tight Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Туре	Cat. No.	Quantity
10	85	23s	Cone	Merlin Valve SSL Injector: Splitless	365D0301	1 Each
	57	23s	Cone	Merlin Valve Injector: PTV and split	365D0311	1 Each
	85	26s	Cone	Splitless and OC	365D0321	1 Each
	57	26s	Cone	Split and PTV	365D0331	1 Each
25	85	23s	Cone	Merlin Valve SSL Injector: Splitless	365F2431	1 Each
	57	23s	Cone	Merlin Valve Injector: PTV and split	365F2441	1 Each
	85	26s	Cone	Splitless and OC	365F2451	1 Each
	57	26s	Cone	Split and PTV	365F2461	1 Each
50	57	23s	Cone	Merlin Valve SSL Injector: LV Splitless	365G2311	1 Each
	85	26s	Cone	LV OC	365G2321	1 Each
	57	26s	Cone	LV Splitless	365G2331	1 Each
100	57	23s	Cone	Merlin Valve SSL Injector: LV Splitless	365H2141	1 Each
	85	26s	Cone	LV OC	365H2151	1 Each
	57	26s	Cone	LV Splitless	365H2161	1 Each
	85	23	Side Hole	Variable depth LV PTV (w & w/o Merlin)	365H2171	1 Each
	57	23	Side Hole	LV PTV (with or without Merlin valve)	365H2181	1 Each
250	85	26	Cone	LV OC	36512321	1 Each
	57	26	Cone	LV Splitless	36512331	1 Each
	85	23	Side Hole	Variable depth LV PTV (w & w/o Merlin)	36512341	1 Each
	57	23	Side Hole	LV PTV (with or without Merlin valve)	36512351	1 Each
500	85	26	Cone	LV OC	365J2411	1 Each
	57	26	Cone	Sample Dilution	365J2421	1 Each
	85	23	Side Hole	Variable depth LV PTV (w & w/o Merlin)	365J2431	1 Each
	57	23	Side Hole	LV PTV (with or without Merlin valve)	365J2441	1 Each
1000	65	23	Side Hole	Headspace	365Q2121	1 Each
	57	22	LC	Sample Dilution	365K2811	1 Each
2500	65	23	Side Hole	Headspace	365Q2131	1 Each
5000	65	22	Side Hole	Headspace	365Q2141	1 Each
10000	57	19	LC	Sample Dilution	365N2721	1 Each

GC Syringes for Agilent Instruments

Removable Needle Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
10	42	23	Cone	365D1611	6 Pack

Fixed Needle, Gas Tight Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
10	42	23-26	Cone	365D0621	1 Each
		23-26	Cone	365D0626	6 Pack

Fixed Needle Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
5	42	23	Cone	365C0951	1 Each
		23	Cone	365C0956	6 pack
		23-26s	Cone	365C0971	1 Each
		23-26s	Cone	365C0976	6 pack
10	42	23	Cone	365D1571	1 Each
		23	Cone	365D1576	6 pack
		23-26s	Cone	365D1621	1 Each
		23-26s	Cone	365D1636	6 pack

Fixed Needle, Super-Elastic Plunger Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
10	42	23-26s	Cone	365D5416	1 Each

GC Syringes for Shimadzu Instruments

Removable Needle Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
5	42	26s	Cone	365C6610	1 Each
		23s	Cone	365C6620	1 Each
10	42	26s	Cone	365D6610	1 Each
		23s	Cone	365D6620	1 Each

GC Syringes for CTC Instruments

Removable Needle Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
10	50	23	Cone	365D3731	1 Each
		26	Cone	365D1841	1 Each

Fixed Needle, Gas Tight Syringes

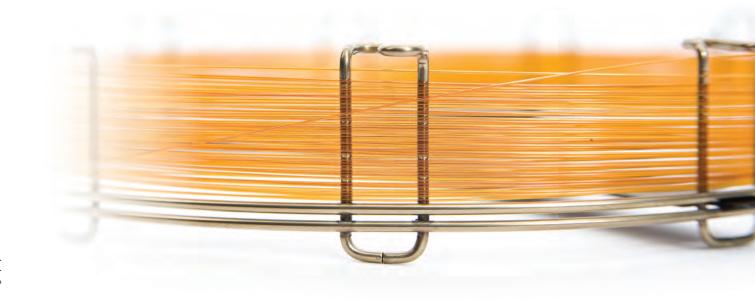
Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
10	50	23	Cone	365D2976	6 Pack
		26	Cone	365D2977	1 Each
		23	Cone	365D3741	1 Each
25	50	26	Cone	365F3700	1 Each
		23	Cone	365F3761	1 Each
100	50	23	Cone	365H3771	1 Each
		26	Cone	365H5700	1 Each
250	50	26	Cone	365H6700	1 Each
500	50	26	Cone	365J7700	1 Each
1000	50	26	Side Hole	365K8135	1 Each
2500	50	26	Side Hole	365L8635	1 Each

Fixed Needle Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
5	50	23	Cone	365C3701	1 Each
		26	Cone	36500505	1 Each
10	50	26	Cone	365D3711	1 Each
		23	Cone	36520060	1 Each
		26	Cone	365D1856	6 Pack
		23	Cone	365D2971	6 Pack

Fixed Needle, Headspace, Gas Tight Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
2500	56	22s	Side Hole	365L4200	1 Each
5000	56	22s	Side Hole	365M4220	1 Each


Manual GC Syringes

Removable Needle, Gas Tight Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
10	50	26s	Bevel	365D0811	1 Each
		26s	Blunt End	365DL263	1 Each
25	50	25	Bevel	365F1931	1 Each
		22s	Blunt End	365FLG31	1 Each
50	05	22s	Blunt End	365GLG41	1 Each
500	50	25	Bevel	365J2881	1 Each
		22s	Blunt End	365JLG71	1 Each
1000	50	23	Bevel	365K3041	1 Each
		22s	Blunt End	365KLG81	1 Each

Removable Needle Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
10	50	26	Bevel	365D1171	1 Each
25	50	25	Bevel	365F1901	1 Each
50	50	25	Bevel	365G2091	1 Each

Fixed Needle, Gas Tight Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
10	50	26	Bevel	365D4433	1 Each
		26s	Blunt End	365D6314	1 Each
25	50	22s	Blunt End	365F6315	1 Each
50	50	25	Bevel	365G2111	1 Each
		22s	Blunt End	365G6316	1 Each
100	50	25	Bevel	365H2321	1 Each
		22s	Blunt End	365H6317	1 Each
250	50	25	Bevel	36512561	1 Each
500	50	25	Bevel	365J2831	1 Each
		22s	Blunt End	365J6319	1 Each
1000	50	22	Bevel	365K3051	1 Each
		22s	Blunt End	365KLG81	1 Each
5000	50	22	Bevel	365M5212	1 Each
		22s	Blunt End	365M6322	1 Each
		22s	Side Hole	365M8922	1 Each
10000	50	22	Bevel	365N5214	1 Each
		22s	Blunt End	365N6323	1 Each
		22s	Side Hole	365N8923	1 Each

Fixed Needle Syringes

Volume (µL)	Length (mm)	Gauge	Tip Style	Cat. No.	Quantity
5	50	26	Bevel	365C0741	1 Each
		26	Bevel	365C0746	6 Pack
10	50	26	Bevel	365D1091	1 Each
		26	Bevel	365D1096	6 Pack
25	50	25	Bevel	365F1891	6 Pack
100	50	25	Bevel	365H2291	6 Pack

PTFE Luer-Lok, Gas Tight Syringes

Volume (µL)	Cat. No.	Quantity
25	365F7655	1 Each
50	365G7656	1 Each
100	365H7657	1 Each
250	36517658	1 Each
500	365J7659	1 Each
1000	365KL531	1 Each
2500	365LL541	1 Each
5000	365ML551	1 Each
10000	365NL561	1 Each
25000	365PL571	1 Each

Luer Tip, Gas Tight Syringes

Volume (µL)	Cat. No.	Quantity
25	365F7812	1 Each
50	365G7813	1 Each
100	365H7814	1 Each
250	36517815	1 Each
500	365J7816	1 Each
1000	365K7817	1 Each
2500	365L7818	1 Each
5000	365M7819	1 Each
10000	365N7820	1 Each

Gas Chromatography Reagents

Derivatization

Chemical literature contains an abundance of data on derivatization, most of which is relevant to particular compounds, classes of compounds and derivatization reagents. Two books are recognized as standards in the field of analytical derivatization. The first book, Handbook of Analytical Derivatization Reactions by Daniel R. Knapp¹, provides a general collection of analytical derivatization methods for chromatography and mass spectrometry (MS) that involves formation of covalent derivatives prior to analysis. The second book, Silylation of Organic Compounds by Alan F. Pierce,2 "was a significant factor in the transfer of silvlation reactions from the relatively esoteric field of organosilicon chemistry to the status of perhaps the most widely practiced of derivatization methods."3

Compounds or compound mixtures are derivatized before analysis for the following reasons:

- To make a compound that otherwise could not be analyzed by a particular method suitable for analysis.⁴
- 2. To improve the analytical efficiency of the compound.^{5,6}
- 3. To improve the detectability of the compound.⁷

Lot # MC155917 Cause densige in the believing engine from the control of the con

Suitability

Often compounds cannot be analyzed because they are not in a form that is suitable for the particular analytical technique. Examples include nonvolatile compounds for GC analysis, 8,9,10 insoluble compounds for HPLC analysis and materials that are not stable using the conditions of the technique. 11 The derivatization procedure modifies the chemical structure of the compounds, allowing analysis by a desired technique. 12

Efficiency

Direct analysis can be difficult when compounds interact with each other or with the column. These interactions can lead to poor peak resolution and/or asymmetrical peaks that make proper peak integration difficult or impractical. This interference can be reduced with conversion to derivatized products. ^{13,14} Compounds that exhibit co-elution can often be separated by using the appropriate derivatization methods.

Detectability

As demand increases for the analysis of increasingly smaller amounts of materials, it becomes important to extend the detectability range of the materials in question. This increased sensitivity can be accomplished by improved detector design that is directed toward specific atoms or functional groups.

Another popular approach to increase detectability is the use of derivatization. Enhanced detectability can be achieved by increasing the bulk of the compound, or by introducing atoms or functional groups that strongly interact with the detector. 16,17 This technique is performed in gas chromatographic applications, with the addition of halogen atoms for electron capture detectors, 18,19 and with the formation of TMS derivatives to produce readily identifiable fragmentation patterns and mass ions. 20

Types of Derivatization

Compounds containing functional groups with active hydrogens (-COOH, -OH, -NH and -SH) are usually derivatized prior to analysis by gas chromatography. These functional groups have a tendency to form intermolecular hydrogen bonds that affect the volatility, their tendency to interact deleteriously with column packing materials and their thermal stability. Silylation, acylation and alkylation are derivatization techniques used to alter these functional groups to improve their thermal and chromatographic character.

The ideal derivatization procedure will:

- 1. Accomplish the desired modification.
- 2. Proceed quantitatively, or at least reproducibly.
- Produce products that are readily distinguishable and separable from the starting materials.
- Proceed rapidly with simple and straightforward laboratory techniques that will be both selective and applicable to a number of similar compounds.
- 5. Involve reagents and reactions that present no unusual hazards.

Thermo Scientific Silylation Reagents

Silyl derivatives are the most widely used derivatives for gas chromatographic applications. Usually they are formed by the replacement of the active hydrogens from acids, alcohols, thiols, amines, amides and enolizable ketones and aldehydes with the trimethylsilyl group. A variety of reagents is available for the introduction of the trimethylsilyl group. These reagents differ in their reactivity, selectivity and side reactions and the character of the reaction products from the silylation reagent itself. Considerable literature is available to assist you in the selection of the most suitable silylation reagent for your particular compounds or systems.^{1,2}

Silylation reagents and trimethylsilyl derivatives are hydrolytically unstable and must be protected from moisture. However, the rate of hydrolysis for various reagents and derivatives is different, and sometimes it is possible to prepare derivatives in the presence of small amounts of moisture, ²¹ or to isolate and purify derivatives by extraction in an organic solvent, followed by washing with aqueous solutions. ²² Reagents that introduce a t-butyldimethylsilyl group instead of the trimethylsilyl group were developed for greater hydrolytic stability. ²³ These derivatives provide improved stability against hydrolysis and provide distinctive fragmentation patterns, making them useful in GC/MS applications. ²⁴

Most trimethylsilyl and t-butyldimethylsilyl derivatives offer excellent thermal stability and are suitable for a wide range of injector and column conditions. However, as the silylation reagents will derivatize nearly all active hydrogens, it is important that they are not injected onto any column in which the stationary phase contains these functional groups. Examples of packings that are not compatible with silylating reagents are polyethylene glycols (TG-WaxMS) and free fatty acid phases (TG-WaxMS A).

References

- Knapp D.R. (1979). Handbook of Analytical Derivatization Reactions, John Wiley & Sons: New York.
- 2. Pierce, A.E. (1968). Silylation of Organic Compounds, Pierce Chemical: Rockford, IL.
- 3. Pierce, A.E. (1968). Silylation of Organic Compounds, Pierce Chemical: Rockford, IL. p. 2.
- Sweeley, C.C., et al. (1963). Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J. Am. Chem. Soc. 85, 2495-2507.
- 5. Khalifa, S. and Mumma. R.O. (1972). J. Agric. Food Chem. 20, 632.
- Sinsheimer, J.E. and Smith, R.V. (1967). Methods for the qualitative and quantitative analysis of some hydroxystilbenes. J. Pharm. Sci. 56, 1280.
- 7. Poole. C.F. (1976). Chem. Ind. (London), 479.
- 8. Brittain, G.D. and Schewe, L. (1971). In *Recent Advances in Gas Chromatography*, Domsky, I.I. and Perry, J.A., Eds., Marcel Decker: New York, NY.
- 9. Sakauchi, N. and Horning, E.C. (1971), Anal. Lett. 4, 41-42.
- Sullivan, J.E. and Schewe, L.R. (1977). Preparation and gas chromatography of highly volatile trifluoroacetylated carbohydrates using N-Methylbis (trifluoroacetamide). J. Chromatogr. Sci. 15, 196-197.
- 11. Hallgren, B. and Larsson, S. (1962). J. Lipid Res. 3, 31.
- Samuelsson, K. and Samuelsson, B. (1969). Gas-liquid chromatography-mass spectroscopy of cerebrosides as trimethylsilyl ether derivatives. *Biochem. Biophys. Res. Commun*, 37(1), 15-21.
- 13. Langer, M., et al. (1960). Chem. Ind. (London), 378.
- 14. Neeman, M., et al. (1959). Tetrahedron, 6, 36.
- Marfey, P. (1984). Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-Difluoro-2,4-Dinitrobenzene. Carlsberg Res. Commun. 49, 591-596.
- 16. Ehrsson, H., et al. (1971). Acta. Pharm. Suecica. 8, 319.
- Koshy, K.T., et al. (1975). O-(2,3,4,5,6-Pentafluorobenzyl) hydroxylamine hydrochloride as a sensitive derivatizing agent for the electron capture gas liquid chromatographic analysis of keto steroids. J. Chromatogr. Sci. 13(Feb). 97-103.
- 18. Walle, T. and Ehrsson, H. (1970). Acta. Pharm. Suecica. 7, 389-406.
- Benington, F., et al. (1975). Identification and separation of indolealkylamines by gas liquid chromatographic analysis of their heptafluorobutyryl derivatives. J. Chromatogr. 106, 435-439.
- Kelly, R.W. and Taylor, P.L. (1976). tert-Butyldimethylsilyl ethers as derivatives for qualitative analysis of steroids and prostaglandins by gas phase methods. Anal. Chem. 48(3), 465.
- 21. Lau, H.L. (1966). J. Gas Chromatogr. 4, 136.
- 22. Tallent, W.H. and Kleinman, R. (1968). J. Lipid Res. 9, 146.
- Mawhinney, T.P. and Madson, M.A. (1982). N-Methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide and related N-tert-butyldimethylsilyl amides as protective silyl donors. J. Org. Chem. 47, 3336-3339.
- 24. Bazan, A.C. and Knapp, D.R. (1982). Improved derivative of 6-keto-prostaglandin F_{1a} for gas chromatographic-mass spectrometric analysis. *J. Chromatogr.* **236**, 201, 207

Thermo Scientific Acylation Reagents

Acylation is the conversion of compounds (through the action of a carboxylic acid or a carboxylic acid derivative) that contain active hydrogens such as -OH, -SH and -NH to esters; thioesters; and amides. In chromatographic applications, the acylation reaction is used primarily for converting the above classes of compounds into derivatives that are better suited for chromatography² or that give a greater response to the chromatographic detection system than the parent compound.3

An important example of this application is the insertion of perfluoroacyl groups into a molecule to enhance the detectability of the substance by electron capture. The presence of a carbonyl group adjacent to the halogenated carbons enhances the electron capture detector (ECD) response.

Acyl derivatives are also useful in MS applications in which they influence the fragmentation patterns of the compounds to be studied.4

References

- 1. Donike, M. (1973). Acylation with bis (acylamides). N-Methyl-bis (trifluoroacetamide), two new reagents for trifluoroacetylation. J. Chromatogr. 78 273-279
- 2. Sullivan, J.E. and Schewe, L.R. (1977). Preparation and gas chromatography of highly volatile trifluoroacetylated carbohydrates using N-Methyl-bis (trifluoroacetamide). J. Chromatogr. Sci. 15, 196-197.
- 3. Benington, F., et al. (1975). Identification and separation of indolealkylamines by gas liquid chromatographic analysis of their heptafluorobutyryl derivatives. J. Chromatogr. 106, 435-439.
- 4. Borga, O., et al. (1971). Quantitative determination of nortriptyline and desmethylnortriptyline in human plasma by combined gas chromatography-mass spectrometry. J. Chromatogr. 4(12), 837-849.

Thermo Scientific Alkylation Reagents

When used in derivatization for gas chromatography, alkylation represents the substitution of an active hydrogen by an aliphatic or aliphatic-aromatic¹ (benzyl) group. This technique is used to modify those compounds containing acidic hydrogens, such as carboxylic acids and phenols. The principal chromatographic use of this reaction is the conversion of organic acids into esters, which produce better chromatograms than the free acids.

In addition, alkylation reactions can be used to prepare ethers, thioethers and thioesters; N-alkylamines; and amides.2 As the acidity of the active hydrogen decreases, the strength of the alkylating reagent must be increased. As the reagents and conditions become harsher, the selectivity and applicability of the methods become more limited.

- 1. Kawahara, F.K. (1968). Microdetermination of derivatives of phenols and mercaptans by means of electron capture gas chromatography. Anal. Chem. 40(6), 1009.
- 2. Kananen, G., et al. (1972). Barbiturate analysis a current assessment. J. Chrom. Sci. 10, 283-287.

Derivatization Reagents for Specific Functional Groups

Functional Group	Procedure	Reagent	Derivative	Notes
	Silylation	BSA	TMS Amides	Difficult to form due to steric hindrance
Amides		BSTFA	TMS Amides	
		BSTFA+TMCS	TMS Amides	TMCS used as a catalyst
0 II		MSTFA	TMS Amides	Reaction byproducts more volatile
-C-NH ₂		MSTFA+TMCS	TMS Amides	
Primary		Tri-Sil Reagents	TMS Amides	Diff. let f
,		MTBSTFA	TBDMCS Amides	Difficult to form; very stable
0	A 1 (MTBSTFA+TBDMCS	TBDMCS Amides	TBDMCS aids derivatization
II -C-NHR	Acylation	MBTFA TFAA	Trifluoroacetamides Trifluoroacetamides	
-U-NITK		PFAA	Pentafluoropropionamides	Good for ECD detection
Secondary		HFBI	Heptafluorobutyamides	good for ECD defection
	Alkylation	MethElute Reagent (TMPAH)	Methyl Amides	On-column derivatization especially for drugs
	Silylation	BSA	TMS	On-column derivatization especially for drugs
	Silylation	BSTFA	TMS	
Aminoo		BSTFA+TMCS	TMS	TMCS aids derivatization
Amines		MSTFA	TMS	TWOO dido dorivatization
H		MSTFA+TMCS	TMS	TMCS aids derivatization
-C-NH ₂		Tri-Sil® Reagents	TMS	
H [*]	Silylation	MTBSTFA	TBDMS	Difficult to form, but more stable
	. ,	MTBSTFA+TBDMCS	TBDMS	TBDMCS aids derivatization
Primary	Acylation	MBTFA	Trifluoroacetamides	Good for trace analysis with ECD
H	,	TFAA	Trifluoroacetamides	Good for trace analysis with ECD
1		TFAI	Trifluoroacetamides	Good for trace analysis with ECD
−C−NHR I		PFAA	Pentafluoropropionamides	
Ĥ		PFPI	Pentafluoropropionamides	
Secondary		HFAA	Heptafluorobutyamides	
		HFBI	Heptafluorobutyamides	
	Alkylation	MethElute Reagent (TMPAH)	Methyl Amides	On-column derivatization for specific drugs
	Silylation	MSTFA	TMS	
Carbohydrates		TMSI	TMS	Can be used with some syrups
-		Tri-Sil Reagents	TMS	
(CH ₂ OH) _n	Acylation	MBTFA	Trifluoroacetates	Volatile derivatives of mono-, di- and trisaccharides
		TFAI	Trifluoroacetates	
	Silylation	BSA	TMS	Easily formed, generally not stable, analyze quickly
		BSTFA	TMS	
		BSTFA+TMCS	TMS	
		MSTFA	TMS	C h
		TMCS TMSI	TMS TMS	Can be used with some salts
Carboxyl		Tri-Sil Reagents	TMS	
0 II		MTBSTFA	TBDMS	More stable than TMS derivatives
_C_OH		MTBSTFA+TBDMCS	TBDMS	TBDMCS aids derivatization
	Alkylation	PFBBr	Pentafluorobenzyl Esters	Used in EC detection and UV. MS
	Aikyiatioii	•••••	Methyl Esters	Best for large samples of fatty acids
		BF ₃ -Methanol Methylate Reagent (DMFDMA)	Methyl Esters	Fatty acids and amino acids
		MethElute Reagent (TMPAH)	Methyl Esters	On-column derivatization
		PFAA+Pentafluoropropanol	Pentafluoropropyl Ester	Drug analysis
	Silylation	BSA	TMS	Most often used derivatives
	Jilylation	BSTFA	TMS	Good thermal stability
		BSTFA+TMCS	TMS	Poor hydrolytic stability
		HMDS	TMS	Weak donor usually used with TMCS
		MSTFA	TMS	
		MSTFA+TMCS	TMS	
Hydroxyl-OH		TMCS	TMS	Weak donor usually used with HMDS; can be used with sa
R-OH		TMSI	TMS	Can be used with syrups
Alcohols		Tri-Sil Reagents	TMS	
		MTBSTFA	TBDMS	More stable than TMS, good MS fragmentation pattern
⟨○⟩ — он		MTBSTFA+TBDMCS	TBDMS	TBDMCS aids derivatization
	Acylation	MBTFA	Trifluoroacetates	Good for trace analysis with EDC
PhenoIs		TFAA	Trifluoroacetates	Good for trace analysis with EDC
		TFAI	Trifluoroacetates	Good for trace analysis with EDC
		PFAA	Pentafluoropropionates	Good for trace analysis with EDC
		HFBI	Heptafluorobutyrates	Good for trace analysis with EDC
		HFAA	Heptafluorobutyrates	Good for trace analysis with EDC
		PFBBr	Pentafluorobenzyl Ethers	

Derivatization Reagents for Drugs of Abuse

Amphetamines $C_{6}H_{5} - CH_{2} - CH - CH_{3}$ Barbiturates $CH_{2} = CH - CH_{2}$ $CH_{3} - [CH_{2}]_{2} - CH$ CH_{3} $Cocaine$ $COCOOH$	Amphetamines Amphetamines Amphetamines Amphetamines Amphetamines Methamphetamine Benzoylecgonine	BSTFA HFAA HFAA/PFAA MSTFA with TMCS TFAA TFAA BSTFA MethElute Reagent (TMPAH) Methylate Reagent (DMFDMA) PFBBr	1 2-5 6 7 7,8 9,10 1 11-13 14,15
$C_{6}H_{5}-CH_{2}-\overset{N}{C}H-CH_{3}$ Barbiturates $CH_{2}=CH-CH_{2}$ $CH_{3}-[CH_{2}]_{2}-\overset{N}{C}H$ CH_{3} $Cocaine$ $COCOOOH$	Amphetamines Amphetamines Amphetamines Amphetamines Methamphetamine	HFAA/PFAA MSTFA with TMCS TFAA TFAA BSTFA MethElute Reagent (TMPAH) Methylate Reagent (DMFDMA)	6 7 7,8 9,10 1 11-13 14,15
Barbiturates $CH_{2} = CH - CH_{2}$ $CH_{3} - [CH_{2}]_{2} - CH$ $CH_{3} - [CH_{3}]_{2} - CH$	Amphetamines Amphetamines Amphetamines Methamphetamine	HFAA/PFAA MSTFA with TMCS TFAA TFAA BSTFA MethElute Reagent (TMPAH) Methylate Reagent (DMFDMA)	6 7 7,8 9,10 1 11-13 14,15
Barbiturates O	Amphetamines Amphetamines Methamphetamine	MSTFA with TMCS TFAA TFAA BSTFA MethElute Reagent (TMPAH) Methylate Reagent (DMFDMA)	7 7,8 9,10 1 11-13 14,15
Barbiturates 0 NH 0 $CH_2 = CH - CH_2$ $CH_3 - [CH_2]_2 - CH$ 0 CH_3 0 0 0 0 0 0 0 0 0 0	Amphetamines Methamphetamine	TFAA TFAA BSTFA MethElute Reagent (TMPAH) Methylate Reagent (DMFDMA)	7,8 9,10 1 11-13 14,15
$ \begin{array}{c} \operatorname{CH}_2 = \operatorname{CH} - \operatorname{CH}_2 \\ \operatorname{CH}_3 - \left[\operatorname{CH}_2\right]_2 - \operatorname{CH} \\ \operatorname{CH}_3 \\ \end{array} $ Cocaine $ \begin{array}{c} \operatorname{COOH} \\ \operatorname{H} \\ \operatorname{O-C-C_6}_6 \operatorname{H_5} \\ \end{array} $	Methamphetamine	TFAA BSTFA MethElute Reagent (TMPAH) Methylate Reagent (DMFDMA)	9,10 1 11-13 14,15
$ \begin{array}{c} \operatorname{CH}_2 = \operatorname{CH} - \operatorname{CH}_2 \\ \operatorname{CH}_3 - \left[\operatorname{CH}_2\right]_2 - \operatorname{CH} \\ \operatorname{CH}_3 \\ \end{array} $ Cocaine $ \begin{array}{c} \operatorname{CH}_3 \\ \operatorname{COOOH} \\ \operatorname{H}_0 - \operatorname{C-C}_0 \operatorname{C}_0 \operatorname{H}_5 \\ \end{array} $		BSTFA MethElute Reagent (TMPAH) Methylate Reagent (DMFDMA)	1 11-13 14,15
$ \begin{array}{c} \operatorname{CH}_2 = \operatorname{CH} - \operatorname{CH}_2 \\ \operatorname{CH}_3 - \left[\operatorname{CH}_2\right]_2 - \operatorname{CH} \\ \operatorname{CH}_3 \\ \end{array} $ Cocaine $ \begin{array}{c} \operatorname{CH}_3 \\ \operatorname{COOOH} \\ \operatorname{H}_0 \\ \operatorname{COOOH} \\ \operatorname{H}_0 \\ \operatorname{COOOH} \\ \operatorname{H}_1 \\ \operatorname{COOOH} \\ \operatorname{COOOH} \\ \operatorname{H}_1 \\ \operatorname{COOOH} $	Benzoylecgonine	MethElute Reagent (TMPAH) Methylate Reagent (DMFDMA)	11-13 14,15
$ \begin{array}{c} \operatorname{CH}_2 = \operatorname{CH} - \operatorname{CH}_2 \\ \operatorname{CH}_3 - \left[\operatorname{CH}_2\right]_2 - \operatorname{CH} \\ \operatorname{CH}_3 \\ \end{array} $ Cocaine $ \begin{array}{c} \operatorname{COOH} \\ \operatorname{H} \\ \end{array} $	Benzoylecgonine Benzoylecgonine	Methylate Reagent (DMFDMA)	14,15
Cocaine CH ₃ -[CH ₂] ₂ -CH CH ₃ O COCAINE CH ₃ -CH ₃ COOH	Benzoylecgonine	Methylate Reagent (DMFDMA)	
Cocaine COOH H CO-C-C ₀ H ₅	Benzoylecgonine		
Cocaine COOH H CO-C-C ₀ H ₅	Benzoylecgonine		
Cocaine	Benzoylecgonine		
N CH3 COOH H O-C-C-C ₀ H ₅	Benzoylecgonine		
N CH3 COOH H O-C-C-C ₀ H ₅	Denzoyiecyonine	DCTEA / Dutyl Loding / TMDA LI	17
H 0-C-C ₆ H ₅		BSTFA/Butyl lodine/TMPAH	
H 0-C-C ₆ H ₅		BSTFA	1,18
H 0-C-C ₆ H ₅		MTBSTFA	19
YO-C-C ₆ H ₅		PFAA/PFPOH	9,20
НÖ			
-			
LSD cooh		BSA	21
<u> </u>		BSTFA	22
\bigcap		MSTFA	21
		TFAI	23
H CH ₂		/ \(\)	20
\checkmark			
HN——□			
Marijuana	THC metabolites	BSA	24
		BSTFA/BSTFA+1% TMCS	24-27
соон		BSTFA/TMCS/TMSI	24
		MSTFA	9
ОН		MSTFA/MSTFA+1% TMCS	27
- 人 人		MTBSTFA	28
CH3 ()		PFBBr	29
CH ₃ C ₅ H ₁₁		PFAA/HFIOH	30
0113		PFAA/PFPOH	31
		TFAA and BF ₃ /MeOH	32
		MethElute Reagent (TMPAH)	9
		TMSI	24
Oniatas	Mornhine	····•	33
Opiates	Morphine	BSTFA+1% TMCS	
		MBTFA	34
		PFAA	35
rN-ch₃		TFAA	36
/	Morphine/Codeine	BSTFA	1,37
/ 		BSTFA+1% TMCS	38,39
		BSTFA/TFAI	40
(()_\\		HFBA	38
		MBTFA	38
) <u> </u>		PFAA	38,41
но 10° он			
		PFAA/HFAA	37
		PFAA/PFPOH	9
		TFAA	42
		Trimethylsilyl	43
PCP	PPC/PCHP/PCP	BSTFA+1% TMCS	44
	-,,	HFAA	45
L J			
C ₆ H ₅			
<u>.</u>			
⊿N-			
			

See references on following page.

† Reagent names correspond to product names as listed in this catalog, except PFPOH (pentafluoropropanol).
HFIOH (heptafluoro-isopropanol) is not offered by Thermo Fisher Scientific. PFAA (PentaFluoropropionic Acid Anhydride) and HFAA (HeptaFluorobutyric Acid Anhydride) are sometimes incorrectly referred to as PFPA and HFBA (respectively), which are the appropriate abbreviations for the free acid.

Derivatization Reagents for Drugs of Abuse continued

References

- 1. Dutt, M.C. (1982). J. Chromatogr. 248, 115-124.
- 2. Wu, A.H.B., et al. (1992). J. Anal. Toxicol. 16, 137-141.
- 3. Thurman, E.M., et al. (1992). J. Anal. Toxicol. 16, 19-27.
- 4. Reimer, M.L., et al. (1993). Biol. Mass Spectrom. 22, 235-242.
- 5. Yamamoto, T., et al. (1989). J. Anal. Toxicol. 13, 117-119.
- 6. Wu, A.H.B., et al. (1992). Biol. Mass Spectrom. 21, 278-284.
- 7. Rood, H.D. and Knitter, J.A. (1991). Capillary Chromatography. W.G. Jennings,
- 8. DePace, A., et al. (1990). J. Forensic Sci. 35(6), 1431-1435.
- 9. Mulé, S.J. and Casella, G.A. (1998). J. Anal. Toxicol. 12, 102-107.
- 10. Suzuki, S., et al. (1983). J. Chromatogr. 267, 381-387.
- 11. Kananen, G., et al. (1972). J. Chromatogr. Sci. 10, 283-287.
- 12. Skinner, R., et al. (1973). Anal. Chem. 45(3), 574-576.
- 13. Mulé, S.J. and Casella, G.A. (1989). J. Anal. Toxicol. 13, 13-16.
- 14. Christophersen, A.S. and Rasmussen, K.E. (1980). J. Chromatogr. 192, 363-374.
- 15. Venturella, V.S., et al. (1973). J. Pharm. Sci. 62(4), 662-668.
- 16. Walle, T. (1975). J. Chromatogr. 114, 345-350.
- 17. Ellerbe, P., et al. (1992), J. Anal. Toxicol. 16, 158-162.
- 18. Graffeo, A.P., et al. (1976). J. Chromatogr. 126, 712-717.
- 19. Harkey, M.R., et al. (1991). J. Anal. Toxicol. 15, 260-265.
- 20. Bodor, G., et al. (1990). Clin. Chem. 36, 742-747.
- 21. Jane, I. and Wheals, B.B. (1973). J. Chromatogr. 84, 181-186.
- 22. Nelson, C.C. and Foltz, R.L. (1992). Anal. Chem. 64, 1578-1585.

- 23. Lim, H.K., et al. (1988). Anal. Chem. 60, 1420-1425.
- 24. Harvey, D.J. (1981). Biomed. Mass. Spec. 8(8).
- 25. Parry, R.C., et al. (1990). J. Anal Toxicol. 14, 39-43.
- 26. Clatworthy, A.J. (1990). Forensic Sci. Int. 46, 219-230.
- 27. Baker, T.S., et al. (1984). J. Anal Toxicol. 8, 255-259.
- 28. Clouette, R., et al. (1993). J. Anal Toxicol. 17, 1-4.
- 29. Rosenfeld, J.M., et al. (1986). Anal. Chem. 58, 716-721.
- 30. McBurney, L.J., et al. (1986). J. Anal Toxicol. 10, 56-64.
- 31. Karlsson, L., et al. (1983). J. Anal Toxicol. 7, 198-202.
- 32. Foltz, R.L. (1984). Advances in Analytical Toxicology, I. R.C. Baselt, ed. Foster City, CA: Biomedical Publications.
- 33. Wilkinson, G.R., et al. (1969). Biochem. Pharmacol. 18, 1435-1439.
- 34. Weitz, C.J., et al. (1986). Proc. Nat. Acad. Sci. 83, 9784-9788.
- 35. Fehn, J. and Megges, G. (1985). J. Anal. Toxicol. 9, 134-138.
- 36. Wasels, R., et al. (1989). J. Chromatogr. 489, 411-418.
- 37. Christopherson, A.S., et al. (1987). J. Chromatogr. 422, 117-124.
- 38. Chen, B.H., et al. (1990). J. Anal. Toxicol. 14, 12-17.
- 39. Bowie, L. and Kirkpatrick, P.B. (1989). J. Anal. Toxicol. 13, 326-329.
- 40. Nelson, C.C. and Foltz, R.L. (1992), Anal. Chem. 64, 1578-1585.
- 41. Grinstead, G.F. (1991). J. Anal. Toxicol. 15, 293-298.
- 42. Fuller, D.C. and Anderson, W.H. (1992). J. Anal. Toxicol. 16, 315-318.
- 43. Lee, H.M. and Lee, C.W. (1991). J. Anal. Toxicol. 15, 182-187.
- 44. Woodworth, J.R., et al. (1984). J. Anal. Toxicol. 8, 2-6.
- 45. Cone, E., et al. (1981). J. Chromatogr. 223, 331-339.

Drugs of Abuse Derivatization Applications

Cocaine Metabolites

Cardenas, S., et al. (1996). Rapid Commun. Mass Spectrom. 10, 631-636.

Crouch, D.J., et al. (1995). J. Anal. Toxicol. 19, 352-358.

Smimow, D., et al. (1995). Presented at the Society of Forensic Toxicolologists, Baltimore, MD, 72.

Okeke, C.C., et al. (1994). Chromatographia 38, 52-56.

Cone, E.J., et al. (1994). Clin. Chem. 40, 1299-1305.

Peterson, K.L., et al. (1994). Presented at the 46th Annual Meeting of the American Academy of Forensic Sciences, San Antonio, TX, 197.

Moore, J.M., et al. (1993). J. Forensic. Sci. 38, 1305-1325.

Aderjan, R.E., et al. (1993). J. Anal. Toxicol. 17, 51-55.

Taylor, R.W., et al. (1991). Adv. Lab Autom. Rob. 7, 567-582.

Ortuno, J., et al. (1990). J. Pharmaceut. Biomed. Anal. 8, 911-914.

Verebey, K., et al. (1989). J. Forensic Sci. 34, 46-52.

Vasiliades, J. (1989). J. Anal. Toxicol. 13, 127.

Isenschmid, D.S., et al. (1988). J. Anal. Toxicol. 12, 242-245.

Mule, S.J., et al. (1988). J. Anal. Toxicol. 12, 153-155.

Derivatization of Cannabinoids

Prest, H. Advantages of positive chemical ionization mass spectroscopy.

Application Note. Hewlett Packard Co.

Lisi, A.M., et al. (1993). J. Chromatogr. 617, 265-270.

Wu, A.H.B., et al. (1993). J. Anal. Toxicol. 17, 215-217.

Clouette, R., et al. (1993). J. Anal. Toxicol. 17, 1-4.

Fysh, R.R. (1989). Presented at the 26th International Meeting of the International Association of Forensic Toxicologists, Glasgow, Scotland, 67.

Rosenfeld, J.M., et al. (1989). Anal. Chem. 61, 925-928.

Baker, T.S., et al. (1984). J. Anal. Toxicol. 8, 255-259.

Karlsson, L., et al. (1983). J. Anal. Toxicol. 7, 198-202.

Borys, H.K., et al. (1981). J. Chromatogr. 205, 303-323.

Derivatization of Amphetamines

Kuroda, N., et al. (1998). J. Chromatogr. A. 798, 325-334.

Dasgupta, A., et al. (1998). Amer. J. Clin. Pathol. 109, 527-532.

Cheung, S., et al. (1997). J. Chromatogr. B. 690, 77-87.

Sadeghipour, F., et al. (1997). J. Chromatogr. A. 761, 71-78.

Hara, K., et al. (1997). J. Anal. Toxicol. 21, 54-58.

Shin, H.-S., et al. (1996). Anal. Chem. 68, 3015-3020.

Meatherall, R.C. (1994). Presented at the 1994 TIAFT-SOFT Program, Tampa, FL, 66.

Thompson, W.C., et al. (1994). Clin. Chem. 40, 1703-1706.

Sievert, H.J.P. (1994). Chirality 6, 295-301.

Melgar, R., et al. (1993). J. Anal. Toxicol. 17, 399-402.

Jones. J.B., et al. (1993). J. Anal. Toxicol. 17, 447.

Gjerde, H., et al. (1993). J. Anal. Toxicol. 17, 65-68.

Cody, J.T., et al. (1992). J. Chromatogr. 580, 77-95. Hughes, R.O., et al. (1991). J. Anal. Toxicol. 15, 256-259.

Gan, B.K., et al. (1991). J. Forensic Sci. 36, 1331-1341.

Lillsunde, P., et al. (1991). Forensic Sci. Int. 49, 205-213.

Rasmussen, S., et al. (1989). J. Anal. Toxicol. 13, 263-267.

Czarny. R.J., et al. (1989). J. Anal. Toxicol. 13, 257-262.

Hornbeck, C.L., et al. (1989). J. Anal. Toxicol. 13, 144-149.

Derivatization of Opiates

Brendler, J.P., et al. (1998). Presented at the AAFS, San Francisco, CA.

Balikova, M., et al. (1998). Forensic Sci. Int. 94, 201-209.

Emara, S. (1998). Biomed. Chromatogr. 12, 15-20.

Hyotylainen, T., et al. (1997). J. Chromatogr. A. 771, 360-365.

Guillot, J.G., et al. (1997). J. Anal. Toxicol. 21, 127-133.

Dietzen, D.J., et al. (1995). J. Anal. Toxicol. 19, 299-303.

Hendrickson, T.L., et al. (1994). J. Chromatogr. B. 653, 147-154.

Nakahara, Y., et al. (1992). Arch. Toxicol. 66, 669-674.

Chari, G., et al. (1991). J. Chromatogr. 571, 263-270.

Lee, H.-M., et al. (1991). J. Anal. Toxicol. 15, 182-187. Chen, B.H., et al. (1990). J. Anal. Toxicol. 14, 12-17.

McLean, C.F., et al. (1990). J. Pharm. Pharmacol. 42, 669-671. Wasels, R., et al. (1989). J. Chromatogr. 489, 411-418.

Battah, A.-K., et al. (1989). Presented at the 26th Annual International Meeting of the International Association of Forensic Toxicologists, Glasglow, Scotland, 16.

Derks, H.J.G.M., et al. (1986). J. Chromatogr. 370, 173-178.

Moore, J.M., et al. (1984). Anal. Chem. 56, 642-646.

Troubleshooting Reagents

Derivatization Problem	Possible Cause	Recommended Solution
Low Yield	Carrier, air, detector (FID) hydrogen or make-up gas flow set incorrectly	Measure flows using a Thermo Scientific GFM Pro Gas Flow Meter and set accordingly using instrument manufacturer's recommendations
	Reagent deteriorated	Store reagent properly to prevent oxygen/water contamination, temperature damage (refer to product specification sheet)
	Rate of reaction too slow	Re-evaluate reagent concentration, time, temperature and consider heating the reaction mix (consider the thermal stability of the analytes and reagents)
	Water in reaction mix	Remove water by adding sodium sulfate to sample. Store reagent properly to prevent oxygen/water contamination
	Improper handling technique: (e.g. Low boiling components could be lost during sample concentration); sample too dilute; wrong solvent	Re-evaluate technique, if possible eliminate steps in which analyte could be adsorbed or otherwise lost (unnecessary transfers etc.)
	Wrong reagent	Re-evaluate reagent selection and select more appropriate reagent
	Impurities in solvent, starting material, catalysts, or extract interfering with derivatization (e.g. Plasticizers from vial, inorganics used in sample synthesis, preservatives or antioxidants in solvents)	Use only highest purity material at all steps in the sample preparation process
	Reagent: sample ratio too low	Use more reagent for same amount of sample
	Sample adsorbed to glassware	Deactivate glassware, inlet sleeve and column by silanizing
No sample separation after adding reagent and heating	Septum in reaction vial not sealed	Prepare a new sample and derivatize. Be sure that the vial is sealed
Detector response low	Sample components absorbed by inlet liner or column	Inject standard on column known to be performing well. If results are good, remove inlet liner and check cleanliness. Use new, deactivated liner or replace glass wool and packing. Rinse bonded phase column or remove a few cm from inlet end of non-bonded column. If performance is not restored, replace column
	Low yield of derivative — reaction did not go to completion	Add more reagent, increase temperature or heating time or add catalyst. Water may be present; add sodium sulfate to sample
	Detector (FID) dirty	Clean FID as per instrument manual
Extra peak(s)	Derivative reacting with solvent	Use a solvent that does not have an active hydrogen, alcohol or enolizable ketone group (e.g. Hexane, toluene etc.)
	Impurities from sample solvent, reagents, sample vial, other labware	Inject solvent and reagents blanks, solvent rinse from unused vial etc. Isolate sources of impurities
	Reagents interacting with column	Verify that reagent is compatible with analytical column
	Derivative undergoing hydrolysis	Remove water by adding sodium sulfate to sample. Store reagent properly to prevent oxygen/water contamination
Missing peaks or solvent peak only	Wrong reagent Reagent deteriorated	Re-evalaute reagent selection Store reagent properly to prevent oxygen/water contamination, temperature damage (refer to product specification sheet)
	Rate of reaction too slow	Re-evaluate reagent concentration, time, temperature and consider heating the reaction mix (consider the thermal stability of the analytes and reagents)
	Impurities in solvent, starting material, catalysts, or extract interfering with derivatization (e.g. Plasticizers from vial, inorganics used in sample synthesis, preservatives or antioxidants in solvents)	Use only highest purity material at all steps in the sample preparation process
	Sample adsorbed to glassware	Deactivate glassware, inlet sleeve and column by silanizing
	Reagent: sample ratio too low	Use more reagent for same amount of sample
	Water in reaction mix	Remove water by adding sodium sulfate to sample. Store reagent properly to prevent oxygen/water contamination

Silylation Reagents

BSTFA and BSTFA + TMCS

For excellent chromatographic separations and difficult-to-silylate compounds

BSTFA is a powerful trimethylsilyl donor, with donor strength that is comparable to its unfluorinated analog BSA [N,O-Bis(trimethylsilyl)acetamide]. BSTFA reacts to replace labile hydrogens on a wide range of polar compounds with a -Si(CH₃)₃ group. This physical characteristic is particularly useful in the gas chromatography of some lower boiling TMS-amino acids and TMS Krebs cycle acids.

- Increased volatility of reaction byproducts mono (trimethylsilyl) trifluoroacetamide and trifluoroacetamide over corresponding nonfluorinated compounds from BSA
- Increased volatility makes it possible to derivatize smaller molecules with which the TMS derivatives elute with the byproducts from BSA
- Excellent for derivatizing fatty acid amides, slightly hindered hydroxyls and other compounds
- Catalyzed formulation is stronger than BSTFA alone

$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 - \text{Si} - \text{CH}_3 \\ \text{I} \\ \text{O} \\ \text{CH}_3 \\ \text{I} \\ \text{I} \\ \text{CF}_3 - \text{C} = \text{N} - \text{Si} - \text{CH}_3 \\ \text{I} \\ \text{CH}_3 \end{array} \qquad \begin{array}{c} \text{BSTFA} \\ \text{MW 257.4} \\ \text{bp } 40^{\circ}\text{C}/12 \text{ mm} \\ \text{d}^{\frac{20}{4}} \ 0.961 \\ \text{CH}_3 \end{array}$

BSTFA and BSTFA + TMCS

Description	Quantity		Cat. No.	Quantity
BSTFA	10×1 mL ampules		TS-38830	1 Pack
	25g		TS-38828	1 Each
	100g	Χ	TS-38829	1 Each
BSTFA + 1% TMCS	10 × 1mL ampules		TS-38831	1 Pack
	10g	•	TS-38832	1 Each
	25g		TS-38833	1 Each
	100g	Χ	TS-38834	1 Each
BSTFA + 10% TMCS	10 × 1mL ampules		TS-38840	1 Pack

X in the ordering table indicates that hazardous shipping charges apply.

MSTFA and MSTFA + 1% TMCS

Offers maximum volatility

- Trimethylsilyl donor strength comparable to BSA and BSTFA
- Reacts to replace labile hydrogens on a wide range of polar compounds with a Si(CH₃)₃ group
- Used to prepare volatile and thermally stable derivatives for GC and MS
- Volatile byproduct, N-methyltrifluoroacetamide, has an even lower retention time than MSTFA
- Often TMS derivatives of small molecules can be analyzed when derivatized with MSTFA because the byproducts and the reagent itself usually elute with the solvent front
- Addition of Thermo Scientific TMCS aids derivatization of amides, secondary amines and hindered hydroxyls not derivatized by MSTFA alone

MSTFA MW 199.1 bp 70°C/75 mm d²⁰ 1.11

MSTFA and MSTFA + 1% TMCS

Description	Quantity	Cat. No.	Quantity
MSTFA	10 × 1mL ampules	TS-48910	1 Pack
	10g	TS-48911	1 Each
	25mL	TS-48913	1 Each
	100mL	X TS-48914	1 Each
MSTFA + 1% TMCS	10 × 1mL ampules	TS-48915	1 Pack

X in the ordering table indicates that hazardous shipping charges apply.

BSA

The perfect reagent for rapid silylation reactions

- Highly reactive trimethylsilyl donor that reacts quantitatively to form volatile, stable TMS derivatives
- · Reacts quickly and quantitatively under mild conditions with a variety of compounds
- Derivatizes alcohols, amines, amides, carboxylic acids, phenols, steroids, biogenic amines and alkaloids

$$\begin{array}{c} \text{CH}_3 \\ \text{I} \\ \text{CH}_3 - \text{Si} - \text{CH}_3 \\ \text{I} \\ \text{O} \\ \text{CH}_3 \\ \text{I} \\ \text{O} \\ \text{CH}_3 \\ \text{O} \\ \text{I} \\ \text{I} \\ \text{CH}_3 - \text{C} = \text{N} - \text{Si} - \text{CH}_3 \\ \text{I} \\ \text{CH}_3 \\ \end{array}$$

BSA

Description	Quantity	Cat. No.	Quantity
BSA	10 x 1mL	TS-38836	1 Pack

Silylation Reagents

MTBSTFA and MTBSTFA + 1% TBDMCS

Offers stable TBDMS (tert-butyldimethylsilyl) derivatization

- Derivatizes hydroxyl, carboxyl, thiol and primary and secondary amines
- Typical yields are >96%
- Provides TBDMS ethers that are 104 times more stable to hydrolysis than TMS ethers
- Reaction byproducts are neutral and volatile
- Derivatives have a high molecular concentration at M-57
- Silylating potential increased by adding 1% TBDMCS

MTBSTFA and MTBSTFA + 1% TBDMCS

Description	Quantity	Cat. No.	Quantity
MTBSTFA	5mL ampules	TS-48920	1 Each
MTBSTFA + 1% TBDMCS	10 × 1mL	TS-48927	1 Pack

TMSI (N-Trimethylsilylimidazole)

The strongest silylator available for carbohydrates and steroids

- Reacts quickly and smoothly with hydroxyls and carboxylic acids but not with amines
- Especially useful in multiderivatization schemes for compounds containing both hydroxyl and amine groups
- Used in the derivatization of alcohols, phenols, organic acids, steroids, hormones, glycols, nucleotides and narcotics
- Excellent for C1 through C5 fatty acids in serum and urine

TMSI

Description	Quantity	Cat. No.	Quantity
TMSI (N-Trimethylsilylimidazole)	10 × 1mL ampules	TS-88623	1 Pack
	25g	TS-88625	1 Each
	100g	TS-88626	1 Each

HMDS (Hexamethyldisilazane)

The popular choice for silvlation of sugars and related substances

- Greatly extends the practical range of GC, improving chromatographic results
- Suitable for deactivating and coating chromatographic supports
- Monofunctional, making polymerization not possible and eliminating surface moisture

HMDS

Description	Quantity	Cat. No.	Quantity
HMDS (Hexamethyldisilazane)	25g	TS-84770	1 Each

TMCS (Trimethylchlorosilane)

An excellent catalyst for difficult-to-silylate compounds

- Excellent adjunct for forming trimethylsilyl ethers for GC determinations
- Used to prepare TMS derivatives of organic acids

СН _З	TMCS
CH ₃ — Si — CI	MW 108.7
	bp 57.6°C
CH ₃	d ²⁰ 0.858

TMCS

Description	Quantity	Cat. No.	Quantity
TMCS	25g	TS-88530	1 Each

MOX (Methoxamine) Reagent

Useful for preparing oximes of steroids and ketoacids prior to silylation

- 2% methoxyamine HCI (M.W. 83.51) in pyridine
- Prevents formation of multiple derivatives when enols are present during silylation
- Supplied in amber Thermo Scientific™ Hypo-Vial™ Sample Storage Vial with septum and crimp top

MOX

Description	Quantity	Cat. No.	Quantity
MOX (Methoxamine) Reagent (2% methoxyamine • HCI in pyridine)	10mL	TS-45950	1 Each

Silylation Reagents

Tri-Sil HTP (HMDS:TMCS:Pyridine) Reagent

Reagent-catalyst mixture for one-step derivatization

- Derivatizes carbohydrates, phenols, steroids, sterois, organic acids, alcohols and some amines
- Useful for rapid production of TMS derivatives of polar compounds for gas chromatographic determination and biochemical synthesis
- The versatility, speed and ease of use of Tri-Sil HTP Reagent has made it the most widely used silylation formulation available

Tri-Sil HTP

Description	Quantity	Cat. No.	Quantity
Tri-Sil HTP Reagent HMDS:TMCS:Pyridine (2:1:10)	10 × 1mL ampules	TS-48999	1 Pack
Tri-Sil HTP Reagent HMDS:TMCS:Pyridine (2:1:10)	50mL X	TS-49001	1 Each

^{1.} Ng, L., et al. (1993). J. Chromatogr. 637, 104-108.

X in the ordering table indicates that hazardous shipping charges apply.

Tri-Sil BP (BSA:Pyridine) Reagent

Derivatizes alcohols, phenols, organic acids, aromatic amides and amines

Tri-Sil BP Reagent reacts with:

- Alcohols, phenols, some enols and other hydroxyl and polyhydroxyl compounds to from trimethylsilyl esters
- Organic acids to form trimethylsilyl esters
- Aromatic amides to form N-trimethylsilyl derivatives
- Amino acids to form both N- and O-trimethylsilyl derivatives
- Amines to form N-trimethylsilyl derivatives
- In addition, Tri-Sil BP is excellent for unhindered steroids, but it is not recommended for carbohydrates

Tri-Sil BP

Description	Quantity	Cat. No.	Quantity
Tri-Sil BP Reagent (2.5mEq/mL BSA in pyridine)	25mL	TS-49012	1 Each

Tri-Sil TBT (TMSI:BSA:TMCS) Reagent

A catalyzed silylation reagent formulation containing three parts TMSI, three parts BSA and two parts TMCS

- Converts all classes of hydroxyl groups to TMS ethers
- Under usual conditions, the reaction is complete in a short period of time at 60 to 80°C, although very hindered hydroxyls may require several hours

Tri-Sil TBT

Description	Quantity	Cat. No.	Quantity
Tri-Sil TBT Reagent TMSI:BSA:TMCS (3:3:2)	10 × 1mL ampules	TS-49016	1 Pack

^{1.} Seidel, V., et al. (1993). Chromatographia 37, 191-201.

Tri-Sil TP Reagent (TMSI:Pyridine)

Derivatizes hydroxyl compounds, particularly carbohydrates

- Silylates alcohols and phenols, organic acids, hydroxylamines, amino acids, carbohydrates, flavonoids, glycols and polyglycols, nucleotides, steroids, hydroxyl acids, barbiturates, narcotics, indoles and vitamins
- · Does not react with amines
- May be used with water as long as there is enough reagent present to react with both the water and the sample

Tri-Sil TP

Description	Quantity	Cat. No.	Quantity
Tri-Sil TP Reagent TMSI: Pyridine (1:4)	10 × 1mL ampules	TS-49230	1 Pack
Tri-Sil TP Reagent TMSI: Pyridine (1:4)	25mL	TS-49231	1 Each

Silylation Reagents

Silylation Grade Solvents

Manufactured to meet your exacting silylation needs

- Purified, dried and packaged under nitrogen in convenient 50mL Hypo-Vial Sample Storage Vials
- Supplied with elastomer septa, allowing immediate access to the sample without exposure to moisture and oxygen
- Use polar solvents (acetonitrile, dimethylformamide, dimethylsulfoxide, pyridine, tetrahydrofuran) to facilitate reactions; nonpolar organic solvents may be used, but they will not accelerate the rate of reaction

Acetonitrile MW 41.05 bp 81.6°C

Dimethylformamide MW 73.09 bp 153°C

Dimethylsulfoxide MW 78.13 bp 189°C

Pyridine MW 79.10 bp 115.2°C

Tetrahydrofuran MW 72.10 bp 66°C

Silylation Grade Solvents

Description	Quantity	Cat. No.	Quantity
Acetonitrile	50mL	X TS-20062	1 Each
Dimethylformamide (DMF)	50mL	X TS-20672	1 Each
Dimethylsulfoxide (DMSO)	50mL	X TS-20684	1 Each
Pyridine	50mL	X TS-27530	1 Each
Tetrahydrofuran (THF)	50mL	X TS-27860	1 Each

X in the ordering table indicates that hazardous shipping charges apply.

For HPLC Grade Solvents, see page 4-205

Acylation Reagents

Pentafluoropropanol

Purified for GC/MS applications

- Addition of fluorine atoms into compounds greatly enhances the sensitivity of certain detectors for all those materials
- Carboxylic acids can be derivatized using a two-step reaction involving reaction with anhydride, followed by a fluorinated alcohol

F F H I I I F-C-C-C-OH F F H

Pentafluoropropanol

MW 150.05 bp 80.6°C

Pentafluoropropanol

Description	Quantity	Cat. No.	Quantity
Pentafluoropropanol	10 x 1mL ampules	TS-65195	1 Pack

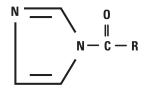
MBTFA

For trifluoroacylating primary and secondary amines, hydroxyl and thiol groups and carbohydrates

- Reacts under nonacidic conditions
- Principle byproduct from the derivatization reaction is N-methyltrifluoroacetamide, which is stable, volatile and does not present problems in subsequent GC
- Produces very volatile derivatives of carbohydrates
- Can be used to selectively acylate amines in the presence of hydroxyl and carboxyl groups that have been protected by silylation

MBTFA MW 223,08 op 123-124°C d²⁴ 1.55

MBTFA


Description	Quantity		Cat. No.	Quantity
MBTFA [N-Methyl-bis(trifluoroacetamide)	10 × 1mL ampules		TS-49700	1 Pack
	25mL		TS-49703	1 Each
	100mL	Χ	TS-49704	1 Each
	5g		TS-49701	1 Each

X in the ordering table indicates that hazardous shipping charges apply.

Perfluoroacylimidazoles (HFBI and TFAI)

Offer effective acylation of hydroxyl groups and primary and secondary amines

- Reactions are smooth, quantitative and produce no acid byproducts
- Principal byproduct, imidazole, is relatively inert
- Excellent for FID and ECD techniques
- Derivatives are volatile, despite size of group
- Closely bound fluorines contribute to stability

R	Name	M.W.	Boiling Point
C_3F_7	HFBI	264.10	57 to 58°C/10mm
CF₃	TFAI	164.08	38 to 40°C/14mm

Perfluoroacylimidazoles (HFBI and TFAI)

Description	Quantity		Cat. No.	Quantity
HFBI	5g	*	TS-44211	1 Each
TFAI	10 x 1mL ampules	•	TS-48882	1 Pack

* indicates that additional dry ice and/or freight charges apply.

Acylation Reagents

Perfluoro Acid Anhydrides (TFAA, PFAA and HFAA)

Highly purified for optimal preparation of fluoracyl derivatives

- Used to prepare fluoracyl derivatives for GC/MS
- Produce stable volatile derivatives for FID and ECD techniques

Perfluoro Acid Anhydrides

Description	Quantity		Cat. No.	Quantity
TFAA (Trifluoroacetic Acid Anhydride)	100g	Χ	TS-67363	1 Each
PFAA (Pentafluoropropionic Acid Anhydride)	10 × 1mL ampules		TS-65193	1 Pack
PFAA	25g	Χ	TS-65192	1 Each
PFAA	100g	Χ	TS-65191	1 Each
HFAA (Heptafluorobutyric Acid Anhydride)	10 × 1mL ampules		TS-63164	1 Pack
HFAA	25g	Χ	TS-63163	1 Each
HFAA	100g	Χ	TS-63162	1 Each

X in the ordering table indicates that hazardous shipping charges apply.

Alkylation Reagents

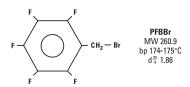
BF₃-Methanol

Provides convenient, fast and quantitative esterification of fatty acids

- Supplied in septum-sealed Hypo-Vial Sample Storage Vial for convenient syringe removal
- Consists of 14% BF₃, MW 67.82, and 86% CH₃OH, MW 32.04

BF₃-Methanol 14% BF₃ MW 67.82 86% CH₃OH MW 32.04

BF₃-Methanol


Description	Quantity	Cat. No.	Quantity
BF ₃ -Methanol	100mL	X TS-49370	1 Each

X in the ordering table indicates that hazardous shipping charges apply.

Pentafluorobenzyl Bromide (PFBBr)

For electron capture GC analysis of carboxyl acids, phenols and sulfonamides

- Fast reaction times for extraction alkylation technique: ~20 minutes
- Derivatives are highly EC-sensitive, making them useful in low-level determinations of fatty acids
- Analysis of trace organics in asphalt

Pentafluorobenzyl Bromide

Description	Quantity	Cat. No.	Quantity
PFBBr (Pentafluorobenzyl Bromide)	5g	TS-58220	1 Each

Methylate Reagent (DMFDMA)

For easy, effective preparation of methyl esters from fatty acids and amino acids

Advantages for preparation of methyl esters for gas chromatography:

- Speed: the reaction is complete upon dissolution (except long chain solid acids)
- No water washing, extraction or concentration of derivatives required
- No water formed
- Quantitation: quantitative yields are obtained when the reagent and sample are injected without prior mixing
- Convenient: ready-to-use reagent contains 2mEq/mL pyridine

e II		OCH ₃
CH ₃	\	1
		N-C-H
CH ₃	/	1
•		OCH3

Methylate Reagent MW 119.17 bp 102-104°C d²⁰/₄ 0.897

Methylate Reagent

Description	Quantity	Cat. No.	Quantity
Methylate Reagent (N, N-Dimethylformamide dimethyl acetal)	25mL	TS-49350	1 Each

Packaged in Hypo-Vial Sample Storage Vial.

Alkylation Reagents

MethElute Reagent (TMPAH)

Provides accurate sensitive on-column methylation

- 0.2M trimethylanilinium hydroxide (TMPAH) in methanol solution
- For quantitative methylation and detection of barbiturates, sedatives, xanthine bases, phenolic alkaloids and phenytoin by gas chromatography
- Single quantitative peak for each substance
- When reagent is heated with drug-containing extracts, serum or urine, those drugs containing reactive amino, hydroxyl and carboxyl functions will be methylated at the reactive sites
- Comparable to or better than UV/TLC method (when phenobarbitol and phenytoin are present, GC is superior to UV/TLC)
- Coefficient of variation is 5% or less
- Detects barbiturates to 0.2mg/dL

MethElute Reagent

Description	Quantity	Cat. No.	Quantity
MethElute Reagent (TMPAH)	10mL	TS-49300	1 Each
MethElute Reagent (TMPAH)	12 × 1mL ampules	TS-49301	1 Pack

Siliconizing Fluids

Water-Soluble Siliconizing Fluid

Attaches the silane polymer, octadecyltrialkosilane, to make the surface inert or polymerizes to create an inert film

- Easy-to-use silane monomer solution that is supplied as a 20% solid solution in a mixture of diacetone alcohol and tertiary butyl alcohol
- Greater resistance to base hydrolysis than other surface treatments
- Can be used on plastic surfaces

Water-Soluble Siliconizing Fluid

Description	Quantity		Cat. No.	Quantity
Siliconizing Fluid-Water Soluble	120mL	Χ	TS-42799	1 Each

X in the ordering table indicates that hazardous shipping charges apply.

Hydrocarbon-Soluble Siliconizing Fluid

Attaches a short-chain silane polymer to make the surface inert or polymerizes to create an inert film

When applied to glass, quartz or similar materials, the unhydrolyzed chlorines present on the chain react with surface silanols to form a neutral, hydrophobic and tightly bonded film over the entire surface.

Siliconizing Fluid – Hydrocarbon Soluble

- Soluble in organic solvents
- Excellent for modifying metals, glass, ceramics and fiber optics
- Can be used for certain plastic surfaces
- Well-suited for treatment of GC injection port liners

Hydrocarbon-Soluble Siliconizing Fluid

Description	Quantity		Cat. No.	Quantity
Siliconizing Fluid-Hydrocarbon Soluble	120mL	Χ	TS-42800	1 Each
Siliconizing Fluid-Hydrocarbon Soluble	480mL	Χ	TS-42801	1 Each

X in the ordering table indicates that hazardous shipping charges apply.

Sample Handling Products

To complete our offering for gas and liquid chromatography, we offer a wide range of heating and stirring systems, vials, closures and other accessories. All Thermo Scientific sample handling products are manufactured under strict conditions, providing the quality you need for reliable derivatization reactions.

Reacti-Therm Sample Derivatization System

This unique product combines heating, stirring and evaporation with unmatched convenience and versatility. The system comprises of a Thermo Scientific™ Reacti-Therm™ heating/stirring module (uniform dry heat to the sample) coupled with the Thermo Scientific™ Reacti-Vap™ evaporator (simultaneous or separate delivery of pressurized gas) to provide a complete solution for derivatization or other small scale reactions. To complete the system we offer a range of accessories including; Thermo Scientific™ Reacti-Vial™ Small Reaction Vials, Thermo Scientific™ Reacti-Blocks™ and Thermo Scientific™ Reacti-Vial™ Magnetic Stirrers.

Reacti-Therm Heating and Stirring Modules

Reliable and easy-to-use for constant temperatures

- Uniform, stable heating: steady temperature incubation between ambient plus 10°C to 200°C
- LED display: match digital display to in-block thermometer to calibrate temperature set-point
- Modular design: switch aluminum blocks and vials; attach compatible evaporator manifold
- Dual-voltage flexibility: compatible with 120V and 240V power; country-specific power cord supplied
- Four models: single-block and triple-block sizes with either heat-only or heat-and-stir capability
- In-block temperature control option by Remote Temperature Probe, an optional accessory to allow temperature regulation from block wells or actual sample vials

Reacti-Therm Heating Modules

Туре	Size of Unit	Cat. No.	Quantity
Heating Function	Single-block	TS-18822	1 Each
	Triple-block	TS-18824	1 Each
Remote Temperature Probe		TS-18820	1 Each

Reacti-Therm Heating and Stirring Modules

Туре	Size of Unit	Cat. No.	Quantity
Heating and Stirring Function	Single block	TS-18821	1 Each
	Triple-block	TS-18823	1 Each

Applications:

- General sample incubation and evaporation in a variety of tube and vial sizes
- Silylation, alkylation and acylation derivatization reactions for GC sample preparation
- Protein hydrolysis and vacuum hydrolysis reactions for amino acid analysis by HPLC

Reacti-Vap Evaporators

Manifolds for easy sample evaporation

- Integrated pressure-relief valve protects against excessive gas-flow and dangerous pressure build up
- Easy set-up: attach to corresponding Reacti-Therm Module, attach tubing from gas supply, and lower into position over samples and start gas flow
- Choose 9-port or 27-port model for compatibility with single-block and triple-block Reacti-Therm Modules, respectively

Reacti-Vap Evaporators

No. of Ports	For Use With	Cat. No.	Quantity
9	Single-block Reacti-Therm Module	TS-18825	1 Each
27	Triple-block Reacti-Therm Module	TS-18826	1 Each

Gas Regulators

Description	Cat. No.	Quantity
1/8" tube fitting	60181-625	1 Each
1/4" tube fitting	60181-626	1 Each

Applications:

- General sample incubation and evaporation in a variety of tube and vial sizes
- Silylation, alkylation and acylation derivatization reactions for GC sample preparation

Reacti-Block Aluminum Blocks

Optimal thermal conductivity

- Constructed of an aluminum alloy for optimal thermal conductivity
- Each Reacti-Block Aluminum Block contains a thermometer well
- \bullet Block dimensions are 9.4 L x 7.5 W x 5.1cm H for all blocks except for F, G, J and M which have a depth (height) of 7.6cm

Reacti-Block Aluminum Blocks

Description		Cat. No
Reacti-Block A-1 Holds 13 x 0.3mL or 1mL Reacti-Vials; 13 holes/14mm dia. x 23mm deep		TS-18801
Reacti-Block B-1 Holds 9 x 3mL or 5mL Reacti-Vials; 9 holes/21mm dia. x 32mm deep		TS-18802
Reacti-Block C-1 Holds 13 x 3.5mL Screw Cap Septum Vials; 13 holes/15mm dia. x 34mm deep		TS-18803
Reacti-Block Z-1 Holds 9 x 0.1mm Reacti-Vials; 9 holes/12mm dia. x 21mm deep		TS-18804
Reacti-Block M-1 Holds 6 x 27.5mL Reacti-Vials; 6 holes/28.5mm dia. x 70mm deep	•••	TS-18811
Reacti-Block S-1 Holds 13 x 13mm dia. Test Tubes; 13 holes/14mm dia. x 45mm deep		TS-18816
Reacti-Block T-1 Holds 9 x 16mm dia. Test Tubes; 9 holes/17mm dia. x 45mm deep	•••	TS-18817
Reacti-Block U-1 Holds 8 x 20mm dia. Test Tubes; 8 holes/21mm dia. x 45mm deep		TS-18818
Reacti-Block V-1 Holds 17 Microcentrifuge Test Tubes; 17 holes/11mm dia. x 45mm deep		TS-18819

The Reacti-Block Aluminium Blocks below are designed to be used exclusively with the Reacti-Therm modules. The hole patterns do not match the needle configuration of Reacti-Vap Evaporators.

Description	Cat. No
Reacti-Block F Holds 8 x 6mL Vacuum Hydrolysis Tubes; 8 holes/10mm dia. x 64mm deep	TS-18806
Reacti-Block G Holds 4 x 18mL Vacuum Hydrolysis Tubes; 4 holes/19mm dia. x 64mm deep	TS-18807
Reacti-Block J Blank/no holes (for custom drilling) 7.6cm tall	TS-18809
Reacti-Block K Blank/no holes (for custom drilling) 5.1cm tall	TS-18810
Reacti-Block L Holds 16 x 0.1mL Reacti-Vials; 16 holes/12mm dia. x 21mm deep	TS-18812

Reacti-Therm Thermometers

Thermometers specially designed for use in dry block heaters

- Mercury-free: alcohol-filled for greater safety
- PTFE coating ensures that glass is impervious to corrosive materials
- Shock-resistant glass and coatings
- Standard laboratory size: 225mm length x 8mm diameter
- Compatible for use in Reacti-Therm Heating Modules and other laboratory equipment

Reacti-Therm Thermometers

Min. Temperature (°C)	Max. Temperature (°C)	Cat. No.	Quantity
0	100	TS-18914	1 Each
0	200	TS-18915	1 Each

Reacti-Vap Replacement Parts

Reacti-Vap Replacement Parts

nousti tup nopiussinonti uits		
Description	Cat. No.	Quantity
Reacti-Vap Replacement Tube Kit 2.5 inch (64mm) (Tubes and Plugs)	TS-18782	9 Pack
Replacement Luer-Lok Fitting	TS-18827	1 Each
Replacement Screws for Mounting Bracket	TS-18828	4 Pack
Replacement Height Adjustment Knob	TS-18829	1 Each
Replacement Mounting Bracket	TS-18830	1 Each
Replacement Metal Rod	TS-18831	1 Each
Replacement Dial for Flow Control	TS-18832	1 Each
Replacement Long Screws for Mounting Bracket	TS-18833	4 Pack

Reacti-Vial Magnetic Stirrers

Triangular stir bars for faster reaction times and smooth mixing of small samples in conical-bottom vials

- PTFE-coated for chemical resistance and inertness
- Provide for simultaneous stirring of samples in multiple vials when used with a Reacti-Therm Heating/Stirring Module equipped with appropriate Reacti-Block Aluminum Blocks
- Allow increased speed of surface reactions by keeping insoluble reactants in suspension

OS-Thermo Scientifi Macu-Ver

Reacti-Vial Magnetic Stirrers

Fits	Cat. No.	Quantity
3.0, 5.0 and 10.0mL Reacti-Vials	TS-16000	6 Pack
0.3 and 1mL Small Reacti-Vials	TS-16010	6 Pack

Reacti-Vap PTFE-Coated Needles

Support the operation of Reacti-Vap evaporators

Reacti-Vap PTFE-Coated Needles

Needle Length (mm)	Needle Gauge	Cat. No.	Quantity
102 (4in.)	19	TS-18784	9 Pack
152 (6in.)	19	TS-18786	9 Pack

Vacuum Hydrolysis Tubes

For fast, effective protein and peptide hydrolysis

- The upper temperature limit of the Vacuum Hydrolysis Tubes is 260°C; however, do not heat the tubes greater than 100°C in an oven
- Vacuum Hydrolysis Tubes fit conveniently into Reacti-Block Aluminium Heating Blocks

Vacuum Hydrolysis Tubes

_	-			
Volume (mL)	OD (mm)	Length (mm)	Cat. No.	Quantity
1	8	60	TS-29570	1 Each
6	10	150	TS-29571	1 Each
18	19	100	TS-29572	1 Each

Reacti-Vial Small Reaction Vials

An internal cone makes small sample handling easy and convenient

- Extra thick glass wall magnifies the sample, making these vials ideal for observing chemical reactions
- Amber vials available for light-sensitive compounds

• Supplied complete with Open-Top Screw Caps and PTFE/Rubber Discs

Reacti-Vial Small Reaction Vials

Capacity	Cat. No.	Quantity
Amber		
1mL	TS-13097	12 Pack
5mL	TS-13099	12 Pack
Clear		
100μL	TS-13100	12 Pack
300µL	TS-13220	12 Pack
1mL	TS-13221	12 Pack
3mL	TS-13222	12 Pack
5mL	TS-13223	12 Pack
10mL	TS-13225	12 Pack

Applications:

· Residue isolation, derivative preparation, maximum sample retrieval, moisture protection, sample storage, precipitations, centrifugations, solvent evaporation

Thermo Scientific Tuf-Bond PTFE/Silicone Discs

Discs that combine the inertness of PTFE with the resealability of silicone

- Structurally bonded PTFE to silicone; no cement to leak out of your sample after needle penetration
- Reseals instantly, puncture after puncture
- Autoclavable
- Compresses to maintain a tight seal forcing the PTFE to conform to the sealing surface
- Standard syringe and GC needles penetrate the entire disc with ease

Thermo Scientific™ Tuf-Bond™ PTFE/Silicone Discs

Diameter (mm)	Fits	Cat. No.	Quantity
8	100µL Reacti-Vial Small Reaction Vials, 1.5mL Screw Cap Septum Vials	TS-12708	72 Pack
12	0.3 and 1mL Reacti-Vial Small Reaction Vials, 3.5mL Screw Cap Septum Vials	TS-12712	72 Pack
13	7mL Screw Cap Septum Vials	TS-12713	72 Pack
16	14mL Screw Cap Septum Vials; 15mL (0.5 oz.) Screw Cap Bottles	TS-12716	72 Pack
18	3 and 5mL Reacti-Vial Small Reaction Vials	TS-12718	72 Pack
22	25 and 40mL Screw Cap Septum Vials, 240mL (8 oz.) Screw Cap Bottles, 10mL Reacti-Vial	TS-12722	72 Pack

PTFE/Rubber Laminated Discs

Provides a highly inert and unreactive seal

- Constructed of white pharmaceutical rubber with PTFE bonded to one side
- Discs are autoclavable with no loss of integrity after heating above 100°C for 5 hours

PTFE/Rubber Laminated Discs

Diameter (mm)	Fits	Cat. No.	Quantity
12	0.3 and 1mL Reacti-Vial Small Reaction Vials, 2 and 3.5mL Screw Cap Septum Vial	TS-12412	72 Pack
18	3 and 5mL Reacti-Vial Small Reaction Vials; 10 and 25mL Reacti-Flask	TS-12418	72 Pack
22	25 and 40mL Screw Cap Septum Vials	TS-12422	72 Pack

Open-Top Screw Caps

Provide inert, air-tight seal and direct puncture-access to sample with a syringe needle

- Fits into Reacti-Vial Small reaction vials
- Used with PTFE/Rubber laminated discs

Open-Top Screw Caps

Fits	Cat. No.	Quantity
1.5mL Screw Cap Septum Vials, 100µL Reacti-Vials	TS-13208	72 Pack
3 and 5mL Reacti-Vials	TS-13218	72 Pack
0.3 and 1.0mL Reacti-Vials, 3.5mL Screw Cap Septum Vial	TS-13215	72 Pack
7mL Screw Cap Septum Vials	TS-13216	72 Pack
10mL Reacti-Vials, 40mL Screw Cap Septum Vials	TS-13219	72 Pack
14mL Screw Cap Septum Vials	TS-13217	72 Pack

Screw Cap Septum Vials

Economy, convenience and versatility in a vial and closure system

- Flat bottom vials
- Heavy-duty flip-top divider box provides easy access to vials, caps and septa and offers a convenient sample storage center
- Storage of reagents and standards under complete seal with instant syringe access

Screw Cap Septum Vials

Capacity (mL)	Cat. No.	Quantity
Clear		
3.5	TS-13019	72 Pack
7	TS-13028	72 Pack
14	TS-13043	72 Pack
40	TS-13075	72 Pack

Ordering Alerts: Septa not included with vials; must be ordered separately.

Vari-Clean Precleaned Vials

Versatile choice for sampling, analytical and general laboratory needs

Vials

- Allow instant syringe access to reagents and standards through the open top screw caps
- Long-term sample storage of biological media and volatile solutions
- Meticulously cleaned and ready to use, with no residue from the manufacturing process

TFE/Silicone Discs

- Autoclavable and resealable
- 90mm silicone body and 10mm TFE face not cemented into place: no cement leaching or baking out
- TFE provides an inert barrier between sample and screw cap

Capacity (mL)	Cat. No.	Quantity
Clear		
3.5	TS-13504	72 Pack
40	TS-13510	72 Pack

Mininert Valves

Excellent closures for chemicals that deteriorate or evaporate through conventional vial caps and seals

Thermo Scientific™ Mininert™ Valves are screw caps that have integrated resealable valves to allow repeated and unlimited syringe-needle access to samples. Slide the valve one way to open the needle-port. Slide the valve back to close and completely seal the close.

- Available in two sizes 20mm (thread size 20/400) and 27mm (thread size 24/400) to fit 3 and 5mL Reacti-Vial Small Reaction Vials and 40mL Screw Cap Septum Vials, respectively
- Precision crafted from PTFE plastic for repeated use and chemical resistance
- Valve design eliminates the septum-boring that occurs with repeated puncture of traditional septa

Mininert Valves

Size (mm)	Fits	Cat. No.	Quantity
20	Fits 3 and 5mL Reacti-Vial Small Reaction Vials	TS-10135	12 Pack
27	Fits 40mL Screw Cap Septum Vials	TS-10130	12 Pack

Thermo Scientific GC Instrument Accessories & Consumables

Our gas chromatography and mass spectrometry instruments offer solutions to food, environmental and pharmaceutical laboratories, and industrial customers to advance scientific knowledge, enable drug discovery, improve manufacturing processes, and protect people and the environment. When your instrument is tuned for peak performance with parts, you can expect the best results and highest level of productivity to keep your research or processes moving smoothly.

TRACE 1300 Series GC

- User-installable injectors and detectors
- Easy adoption of standard GC methods
- Unmatched detector sensitivity in trace analysis
- Increased robustness of injector technology
- Shorter sample cycle time

For routine GC/GC-MS laboratories that need flexibility for a wide range of applications, the Thermo Scientific™ TRACE™ 1300 Series GC Gas Chromatograph is the latest technology to simplify workflow and increase analytical performance.

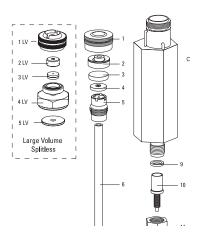
The TRACE 1300 Series offers the most versatile GC platform in the market, with unique instant connect modularity for ground-breaking ease of use and performance, setting a new era in GC technology. GC users now have the unique ability to easily configure the system themselves, to increase throughput or for a rapid exchange of configurations, with the added benefit of continuous operation since modules can be swapped and routine maintenance performed offline to fit laboratory's schedule.

TRACE 1300 Series GC Consumables

Description	Cat. No.	Quantity
Split Straight Liner, 4mm ID x 6.3mm OD x 78.5mm Length, Quartz Wool	453A2265	5 Pack
Splitless Liner, Single Taper, 4mm ID x 6.3mm OD x 78.5mm Length	453A1345	5 Pack
Splitless Liner, Single Taper, 4mm ID x 6.3mm OD x 78.5mm Length, Quartz Wool	453A1925	5 Pack
PTV Siltek Metal Liner, 2mm ID x 2.75mm OD x 120mm Length	45322044	2 Pack
PTV Siltek Metal Liner, 2mm ID x 2.75mm OD x 120mm Length, Silica Wool	45322056	2 Pack
PTV Baffle Liner (Siltek), 2mm ID x 2.75mm OD x 120mm Length	453T2120	5 Pack
Graphite/Vespel Ferrule for 0.1-0.25mm Column	290VA191	10 Pack
Graphite/Vespel Ferrule for 0.32mm Column	290VA192	10 Pack
Encapsulated Graphite Ferrule for 0.1-0.25mm Column	29053488	10 Pack
Encapsulated Graphite Ferrule for 0.32mm Column	29053487	10 Pack
BTO Septa 11mm diameter	31303233	50 Pack
TR-Green Septa 11mm diameter	313G3230	50 Pack
Gold Inlet Base Seals 0.8mm ID	290GA081	10 Pack
Gold Cross Inlet Base Seals 0.8mm ID	290GA084	10 Pack
Siltek Treated Inlet Base Seals 0.8mm ID	290GA091	10 Pack
Siltek Treated Cross Inlet Base Seals 0.8mm ID	290GA094	10 Pack
Column Nut for PTV and PTV Backflush	35053221	5 Pack
Column Nut for SSL-SSL-Backflush, FID, ECD, TCD and NPD	35005458	5 Pack
Silver Gasket	29013820	2 Pack
TID-2 Source for Instant Connect NPD Detector	46500256	1 Each
TID-4 Source for Instant Connect NPD Detector	46500257	1 Each

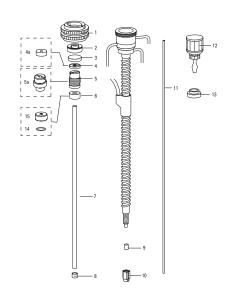
For further consumables for the TRACE 1300 Series GC, please visit the GC Accessories Section on page 3-087.

TRACE GC Ultra Gas Chromatograph


- Innovative advances for enhanced versatility and robustness
- UltraFast GC to boost lab productivity
- Utmost sensitivity through Large Volume Injection techniques

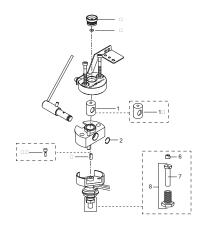
Incorporating a large variety of high quality solutions in injector and detector technology, the Thermo Scientific™ TRACE™ GC Ultra™ gas chromatograph delivers excellent results in full a range of application fields. This versatile GC is easily configured with up to two injectors and three detectors for utmost applicability. Unique UltraFast GC technology delivers tremendous productivity without compromising precision and reliability. A full range of Large Volume Injection (LVI) techniques helps you overcome the sensitivity boundaries of conventional GC.

Split/Splitless (S/SL) Injector, TRACE GC Ultra Gas Chromatograph and FOCUS GC


Item	Description	Cat. No.	Quantity
1	Septum cap	35001050	1
1 LV	Septum cap for LVSL	35001055	1
2	Septum holder	23303015	1
2 LV	Septum holder for LVSL	23303020	1
3/3 LV	Septum (standard = 17mm, LV = 9mm)	See page 3-090	
4	Septum support	35005433	1
4 LV	LVSL adapter	34709346	1
5	Liner cap	29004290	1
5 LV	LVSL adapter Vespel seal	35603450	1
6	Liner	See page 3-091	
7	Liner seal	See page 3-091	
8	Liner cap removing tool	20507010	1
9	Silver seal	29033629	10
10	Terminal fitting for capillary columns	34705451	1
11	Nut for terminal fitting	35022125	2
12	Graphite ferrule	See page 3-098	
13	Fixing nut for column	35032423	5

Split/Splitless (S/SL) Injector, TRACE GC Ultra and FOCUS GC

Programmed Temperature Vaporizing (PTV) Injector, TRACE GC Ultra Gas Chromatograph


Item	Description	Cat. No.	Quantity
1	Septum cap	35001047	1
1	Septum cap for TriPlus HS and HS 2000 autosamplers	35001048	1
1	Merlin septum cap	35001055	1
2	Septum holder	23303018	1
3	Septum	See page 3-090	
4	Septum support* (replaced by item 4A)	35005435	1
4A	Septum support	35005436	1
5	Liner cap* (replaced by item 5A)	29004277	1
5A	Liner cap for PTV 816 RP-2004	29004279	1
6	Liner seal graphite	29013417	2
7	Liner	See page 3-091	
8	Spacer	29014278	2
9	Graphite ferrule	See page 3-098	
10	Fixing nut for column	35032423	5
11	Liner removing tool	39801404	1
12	Screwdriver	20502603	1
13	Ceramic washer	34401100	1
14	Viton® O-ring for sintered liner	29031305	10
14	Kalrez® O-ring for sintered liner	29013702	2
15	Sealing cup for PTV glass liner. To be used with PN 29031305 or PN 29013702	29003420	1

Programmed Temperature Vaporizing (PTV) Injector, TRACE GC Ultra

Cold On-Column Injector, TRACE GC Ultra Gas Chromatograph

Item	Description	Cat. No.	Quantity
1	Seal, PTFE	29007001	1
1A	Direct on-column PFTE seal	29007106	1
2	Clip	426003 57	1
3	Needle guide	45322036	2
3A	Direct on-column needle guide	45322063	2
4	Seal holder (not used with direct on-column head)	35001471	1
5	O-ring (not used with direct on-column head)	29011302	2
6	Vespel® ferrule	See page 3 -098	
7	Backwasher/cooling sleeve for OC	45200001	1
8	Column retaining nut and backwasher for OC	45210001	1

Cold On-Column Injector, TRACE GC Ultra

^{*} Parts for PTV manufactured prior to 2004

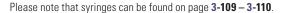
TriPlus RSH Autosampler

- Reliable GC and GC-MS automation
- Liquid injection/Headspace/SPME, all in one unattended sequence
- Enhanced productivity and powerful versatility in sample preparation

The Thermo Scientific™ TriPlus™ RSH Autosampler offers scalable flexibility from simple liquid injection to extended sample preparation. An innovative Automated Tool Change (ATC) station addresses sampling demand and selects the most suitable syringe during a sequence. Up to 6 different syringes can be programmed in a sequence for extended sample preparation capabilities and different sampling modes (liquid, HS, SPME). Unsurpassed sample handling flexibility combined with high sample capacity, places no limits even to more stringent productivity requirments. Multiple sample trays increase unattended operation up to 972 x 2mL vials. The unique Bottom Vial Sensing feature secured syringe depth positioning in your vial for the last µL sample. Even nanovolume injections through the use of plunger-inneedle syringes can be programmed in a flexible sequence. All these, combined with large volume injections deliver unsurpassed sample handling flexibility.

TriPlus RSH Autosampler Accessories and Options

Description	Cat. No.	Quantity
Trayholder for VT15, VT54, VT70 and R60 vial Trays	1R77010-1021	1 Each
VT15 Vial Tray for 10/20mL vials — capacity 15 vials	1R77010-1022	1 Each
VT54 Vial Tray for 2mL vials — capacity 54 vials	1R77010-1023	1 Each
VT70 Vial Tray for 0.7/0.5mL vials — capacity 70 vials	1R77010-1024	1 Each
R60 Aluminium Vial Tray for 10/20mL vials — capacity 60 vials	1R77010-1025	1 Each
Trayholder and vial tray for 10/20mL vials — capacity 32 vials	1R77010-1026	1 Each
Aluminium vial tray for 10/20mL vials — capacity 32 vials	1R77010-1027	1 Each
Temperature Controlled Drawer — compatible with VT15 (10mL only), VT54 and VT70 vial trays	1R77010-1028	1 Each
Foil cutter	1R77010-1070	1 Each
Standard Wash Station – up to 4 x 10mL solvent vials and 1 x 10mL waste vial	1R77010-1029	1 Each
Adaptor for Standard Wash Station for 2mL vials	1R77010-1069	1 Each
Large Wash Station for 2 x 100mL solvent bottles and one waste position	1R77010-1030	1 Each
Solvent station for 3 x 100mL solvent bottles	1R77010-1031	1 Each
Fast Washing Module for 2 solvents	1R77010-1098	1 Each
Liquid syringe tool for 57mm needle (0.5, 1, 5, 10, 25, 50, 100μL syringe volumes) — Syringe not included	1R77010-1007	1 Each
Liquid syringe tool for 85mm needle (0.5, 1, 5, 10, 25, 50, 100μL syringe volumes) — Syringe not included	1R77010-1008	1 Each
Liquid syringe tool for 57mm needle (250, 500, 1000µL syringe volumes) — Syringe not included	1R77010-1009	1 Each
Liquid syringe tool for 85mm needle (250, 500, 1000µL syringe volumes) — Syringe not included	1R77010-1010	1 Each
Liquid syringe tool for 57mm needle (10mL syringe volume) — Syringe not included	1R77010-1011	1 Each
Headspace syringe tool for a 1.0mL syringe with 65mm needle length — Syringe not included	1R77010-1012	1 Each
Headspace syringe tool for a 2.5mL syringe with 65mm needle length — Syringe not included	1R77010-1013	1 Each
Headspace syringe tool for a 5.0mL syringe with 65mm needle length — Syringe not included	1R77010-1014	1 Each
SPME syringe fiber tool (USA only) - includes 4 fibers and fiber holder	1R77010-1099	1 Each
SPME syringe fiber tool (worldwide except USA) – includes 4 fibers and fiber holder	1R77010-1100	1 Each
SPME fiber conditioning module	1R77010-1035	1 Each
Barcode reader for all standard vials with 1D barcode	1R77010-1034	1 Each
Incubation and agitation oven for up to 6 x 2mL, 10mL or 20mL vials	1R77010-1032	1 Each
Agitator adaptors for 2mL vials	1R77010-1067	6 Pack
Agitator adaptors for 10mL vials	1R77010-1068	6 Pack
Multiple Headspace Extraction (MHE) Module	1R77010-1036	1 Each
Vortexer for 0.5mL, 2mL, 10mL or 20mL vials	1R77010-1033	1 Each
Automatic on-column actuator for use with TRACE GC Ultra on-column injection port	1R77010-1037	1 Each
Handheld controller	1R77010-1038	1 Each


Please note that syringes can be found on page 3-111.

TriPlus GC Autosampler*

- Flexible sampling solutions for liquid, headspace and SPME
- Quick installation for easy start-up
- Double productivity with simultaneous operation of two different Thermo Scientific GC or GC/MS systems

Description	Cat. No.	Quantity
Syringe holder for 50mm needles (5, 10, 100, 250µL syringes)	25401010	1
Syringe holder for 50mm needles (0.5, 10, 100, 500µL syringes)	25401015	1
Syringe holder for 80mm syringe needles (5, 10, 100, 250µL syringes)	25401020	1
Syringe holder for 80mm syringe needles (0.5, 10, 100, 500µL syringes)	25401025	1
Syringe holder for TriPlus headspace	36503008	1
Syringe holder for SPME fiber	25401080	1

Sample Trays

Description	Cat. No.	Quantity
Ambient tray holder, configurable in field as primary or secondary	36812755	1
Primary ambient tray, positions 1 — 150, for 1, 2, 2.5mL vials	24010150	1
Primary ambient tray, positions 1 — 54, for 10, 20mL vials	24010160	1
Secondary ambient tray, positions 151 – 300, for 1, 2, 2.5mL vials	24010155	1
Secondary ambient tray, positions 55 – 108, for 10, 20mL vials	24010165	1
Cooled/Heated tray holder, configurable in field as primary or secondary	24010190	1
Primary cooled/heated tray, positions $1 - 96$, for 1, 2, 2.5mL vials	24010195	1
Primary cooled/heated tray, positions 1 – 33, for 10mL vials	24010200	1
Secondary cooled/heated tray, positions 97 – 192, for 1, 2, 2.5mL vials	24010215	1
Secondary cooled/heated tray, positions 34 – 66, for 10mL vials	24010220	1

Washing Stations

Description	Cat. No.	Quantity
Standard 5 x 10mL washing station	19050390	1
2 x 100mL washing station	19050400	1
Fast washing station	19050401	1

Septum Caps

Description	Cat. No.	Quantity
Septum cap for SSL suitable for HS and SPME	34750004	1
Septum cap for PTV suitable for HS and SPME	35001048	1
Septum cap for Merlin Valve SSL-PTV	35001056	1

Bar Code Reader Accessories

Description	Cat. No.	Quantity
Magnetic 9mm caps for bar code reader	38606095	100
Labels for bar code reader	38706782	1000

^{*} Please note that the system is no longer available for sale but is supported by the above products

Syringe Holders

Sample Trays

Washing Stations

AI/AS 1310 and AI/AS 3000 Autosamplers

- Automated liquid injection systems for all Thermo Scientific GC and GC/MS systems
- Performance and simplicity in liquid sampling
- "Tool-Free" upgradability from 8 to 105 or 155 vial positions

Engineered to meet the highest level requirements of ruggedness and ease of use, the AI/AS 1310 automatic sampling system is ideal for high throughput and QA/QC control on the Thermo Scientific GC and GC/MS product portfolio. Utmost precision and ease-of-use of the plug and inject concept are combined in the available configurations: 8-position single module system for small batches of samples; 105-position or 155 position tray system for high sample throughput. Boost productivity further with the Gemini configuration, which allows two autosamplers to be mounted on the same GC, serving two injection ports simultaneously.

Al 1310 mounted onto a TRACE 1310 GC

AI/AS 1310 and AI/AS 3000 Autosamplers

Description	Cat. No.	Quantity
Waste bottle complete with septum and cap (Set of 5)	19004646	1
Centering Plate for Merlin Adapter on S/SL injector of TRACE GC Ultra gas chromatograph	36812734	1
Centering plate for PTV injector and Merlin Adapter on PTV injector of TRACE GC Ultra gas chromatograph	36812736	1
Centering plate for S/SL injector of TRACE GC Ultra gas chromatograph	36812738	1
Centering plate SSL injector, TRACE 1300 Series GC	36812748	1
Centering plate PTV injector, TRACE 1300 Series GC	36812749	1

Please note that syringes can be found on page 3-109.

AS 1310 155-vial Autosampler mounted on a TRACE 1300 GC with ISO Mass Spectrometer

TriPlus 300 Headspace Autosampler

- Unprecedented productivity and accelerated analytical results
- High throughput operations with expanded sample capacity
- Ideal for organic volatiles analysis

The Thermo Scientific™ TriPlus™ 300 Headspace valve-and-loop autosampler offers a quick start-up and enables reliable, unattended and high throughput operations with expanded sample capacity. Its ability to fully comply with existing methods in Pharmaceutical, Forensic and Environmental laboratories makes TriPlus 300 HS the product of choice for automated and dependable organic volatiles determinations.

Combined with the user-configurable TRACE 1300 Series GC and supported by a range of chromatography data systems that offer comprehensive system control, TriPlus 300 HS delivers unprecedented productivity and accelerated analytical results within the laboratory workflow.

TriPlus 300 HS Consumables

Description	Cat. No.	Quantity
Thermo Scientific Chromacol 10mL Screw Top Headspace Vial, Clear	10-HSV	125 Pack
Chromacol 20mL Screw Top Headspace Vial, Clear	20-HSV	125 Pack
0.5mL SilcoNert™ Deactivated Sampling Loop	77010-2009	1 Pack
1mL SilcoNert Deactivated Sampling Loop	77010-2012	1 Pack
3mL SilcoNert Deactivated Sampling Loop	77010-2010	1 Pack
5mL SilcoNert Deactivated Sampling Loop	77010-2011	1 Pack
Chromacol 20mL Crimp Top Headspace Vial, Clear	20-CV	125 Pack
Chromacol 22mL Crimp Top Headspace Vial, Clear (*)	22-CV	125 Pack
Chromacol 22mL Storage Vial — Clear (*)	22-SV	200 Pack
20mL Screw Top Headspace Vial — clear	18091307	100 Pack
10mL Screw Top Headspace Vial — clear	18091306	100 Pack
18mm Screw Cap, Magnetic, Silver, White Silicone/ Blue PTFE Seal	18031414	100 Pack

^(*) these vials don't allow the use of barcodes

ISQ Series Single Quadrupole GC-MS

- Unique Full Source Removal[™] capability delivers maximum uptime and unstoppable productivity
- ExtractaBrite™ solid, inert ion source provides robust operations and low detection limits
- Versatile and flexible for a broad range of applications

The Thermo Scientific $^{\mathbb{N}}$ ISQ $^{\mathbb{N}}$ Series single quadrupole GC-MS system features time-proven technology developed with the accumulation of almost 50 years of mass spectrometry innovation, offering an affordable and robust solution. This GC-MS series offers operational simplicity, proven dependability, and unstoppable productivity.

The ISQ QD GC-MS offers quality design, MS operational simplicity, and proven dependability for QA/QC and low-to medium-throughput production environments, as well as in teaching and academic facilities.

For analytically-demanding, high-throughput laboratories, requiring utmost sensitivity and unstoppable productivity, the ISQ LT GC-MS does not need to be vented to exchange the source, and it boasts the lowest detection limits and unlimited flexibility.

Ion Source Components

•		
Description	Cat. No.	Quantity
El Ion Source Cartridge Kit	1R120404-4100	1
CI Ion Source Cartridge Kit	1R120404-4500	1
Ion Cartridge	1R120404-1105	1
Ion Volume	1R120404-4115	1
El Ion Volume	1R120404-4111	1
Ion Volume-Repeller Insulator	1R120404-1114	1
Repeller (Low Activity)	1R120404-1161	1
Ion Volume Locking Ring	1R120404-1118	1
Repeller Spring (pkg of 5)	1R76485-1000K	5
Repeller Nut	1R120404-1120	1
Lens 1	1R120404-1130	1
Lens 2	1R120404-1140	1
Lens 3/RF Lens	1R120404-1150	1
Ion Volume, CI	1R120404-4112	1
Ion Volume, EI/CI Combo	1R120404-4113	1
Dual Filament	1R120404-1900	1

Column Components

Description	Cat. No.	Quantity
Graphite Vespel ferrule for 0.25mm columns	1R76458-2016	10
Graphite Vespel ferrule for 0.32mm columns	1R76458-2019	10
Graphite Vespel ferrule for 0.53mm columns	1R76458-2020	10
2-hole graphite Vespel ferrule for <0.32mm column	1R76458-2018	10
No-hole graphite Vespel ferrule	1R76458-2009	1
SilTite ferrule for 0.10-0.25mm ID column	1R76458-2000	10
SilTite ferrule for 0.32mm columns	1R76458-2024	10
SilTite ferrule for 0.53mm columns	1R76458-2026	10
Nut for SilTite ferrules	1R76458-2001	5
Nickel-coated nut for graphite Vespel ferrule	1R76256-0060	5
Blind Ferrule	29003421	10

Mechanical (rotary-vane) Pump

Description	Cat. No.	Quantity
Oil, rotary-vane pump, 1 Liter	A0301-15101	1

Accessories

Description	Cat. No.	Quantity
Aluminum oxide	32000-60340	1
Calibration Compound (perfluorotributylamine)	50010-30059	1
Forceps	1R76360-0008	1
ISQ Tool Kit (Does not include exchange tool)	1R120467-0001	1
Source Exchange Tool	1R120406-2000	1
Column Measuring Tool	1R120461-0010	1
Manifold o-ring	1R3815-360	1
Vent valve o-ring	1R3814-111	1
Oil mist filter	1R76505-0036	1
Electron Multiplier	1R76022-14633	1
T10 Torxhead Key	1R3812-5T10	1
T20 Torxhead Key	1R3812-5T20	1
T30 Torxhead Key	1R3812-5T30	1
Adjustable Nut, Transfer Line	1R120434-0010	1
Test mix, octofluoronaphthalene, benzophenone	1R120151-TEST	1

NoVent Microfluidic Platform

Description	Cat. No.	Quantity
3 Port SilFlow MCD (0.25/0.32)	60201-398	1 Each
SilFlow Ferrules 1.1mm ID for tubing 1.07mm OD	29063463	5 Pack
SilFlow Ferrules 0.35mm ID for tubing 0.32mm OD	29063465	10 Pack
SilFlow Ferrules 0.4mm ID for tubing 0.36mm OD	29063466	10 Pack
SilFlow Ferrules 0.5mm ID for tubing 0.45mm OD	29063467	10 Pack
SilFlow Ferrules 0.7mm ID for tubing 0.68mm OD	29063464	10 Pack
SilFlow Ferrules 0.8mm ID for tubing 0.79mm OD	29063468	10 Pack
SilFlow Nuts	290SF302	10 Pack
SilFlow Blanking Pins	290ST414	5 Pack
SilTite FingerTite Tool	60201-401	1 Each
170μm Deactivated Tubing 0.363mm OD 60cm Length	60201-390	1 Each
75µm Untreated Fused Silica Tubing 0.363mm OD 30cm Length	60201-391	1 Each
170μm Deactivated Tubing 0.363mm OD 120cm Length	60201-394	1 Each
75µm Untreated Fused Silica Tubing 0.363mm OD 80cm Length	60201-395	1 Each
SilTite FingerTite Slotted Nut	290ST130	5 Pack
SilTite FingerTite Ferrule 0.4mm Hole	290S1132	10 Pack
Sleeved SS Capillary Tubing	290SF301	1 Each

DSQ Series Single Quadrupole GC-MS Systems*

- Sensitivity and large dynamic range for demanding analyses
- Proven performance for difficult samples
- Analytical flexibility for applications from research to routine

The Thermo Scientific™ DSO™ Series of single quadrupole GC-MS systems includes the DSQ and DSQ II mass spectrometers. Featuring a curved prefilter for reduction of neutral noise, resulting in excellent sensitivity and lower detection limits, the DSQ Series of single quadrupole GC-MS products are suitable for a wide variety of applications.

DSQ II Spare Parts		
Description	Cat. No.	Quantity
Magnet yoke	119850-0710	1
Magnet	1R70001-98195	1
Ion volume holder, Standard	70001-20532	1
lon volume, El	119650-0220	1
lon volume, Cl	119650-0230	1
lon volume, EI/CI Combo	119650-0240	1
lon volume kit, CEI w/holder	119650-0221-KIT	1
Ion volume holder, CEI Only	70001-20532-T	1
lon volume, CEI	119650-0221-T	1
Lens heater ring	120320-0020	1
Lens assembly, Complete	119650-0151	1
Lens holder	119650-0420	1
Lens 1	119650-0414	1
Lens 2	119650-0416	1
Lens 3	119650-0423	1
Lens spacer	119650-0426	1
Lens retainer clip	119650-0428	1
Prefilter lens spacer	119800-0475	1
Prefilter lens	119800-0535	1
Prefilter lens retainer clip	120173-0002	1
Source alignment studs	119650-0215	1
lon source heater assembly	120309-0001	1
Source block assembly	120320-0101	1
Lens retainer clip	120320-0040B	1
Lens retainer stud	120320-0041	1
Ion volume index screw	120320-0042	1
Filament	120320-0030	1
Filament insulator/spacer	119650-0235	1
Filament retainer clip	120320-0050	1
Lens alignment tool	120271-0001	1

^{*} Please note that the system is no longer available for sale but is supported by the above products.

DSQ Spare Parts

Description	Cat. No.	Quantity
lon source assembly (complete)	119850-0250	1
Lens alignment tool	120271-0001	1
Magnet	1R70001-98195	1
Magnet support	119850-0710	1
Source spacer assembly	119800-0475	1
Spring	76485-0032	1
Thumbscrew	119825-0100	1
Filament	119701-60287	1
Filament spacer/insulator	119650-0235	1
Ion source PCB	96000-60087	1
lon volume, Cl	119650-0230	1
lon volume, El	119650-0220	1
Ion volume, EI/CI combo	119650-0240	1
lon volume holder	70001-20532	1

DSQ and **DSQ** II Accessories and Spares

Inlet Valve (Upgrade Option)

	Description	Cat. No.	Quantity
	Ball valve seal replacement kit	76461-2002	1
•	Inlet valve seal replacement kit	119265-0003	1

Accessories

Description	Cat. No.	Quantity
Allen wrench kit, metric	3812-0100	1
Aluminum oxide	32000-60340	1
Back ferrule, 1/8in, brass	A0101-02500	1
Calibration compound (perfluorotributylamine)	50010-30059	1
Column measuring tool	119640-0550	1
Forceps	76360-0400	1
Front ferrule, 1/8in, brass	A0101-08500	1
Test mix, octafluoronaphthalene, benzophenone	120150-TEST	1
Transfer line ferrule, 1/16in to 0.4mm, graphite/vespel	A0101-18100	1

Mechanical (rotary-vane) Pump

Description	Cat. No.	Quantity
Oil, rotary-vane pump	A0301-15101	1

ITQ Series External Ionization GC-Ion Trap MS

- Excellent sensitivity in full-scan operation
- Advance to the power of MSⁿ for incredible selectivity in the dirtiest of matrices
- External ionization source for maximum productivity, reliability, and classical, library searchable spectra

The Thermo Scientific^{∞} ITQ $^{\infty}$ Series is designed with the ability to upgrade in mind, protecting your investment by adapting to your lab's changing work-flows and needs over time. If your needs change, upgrade your instrument to gain access to new features, greater flexibility, more power. Better yet, regardless of your choice, you will have the most sensitive GC-ion trap mass spectrometer available, giving you lower detection limits, even in matrix.

The ITQ Series offers a range of operating modes, from full-scan MS and MS/MS (MS¹), to positive and negative chemical ionization. Dual modes for sequential full scan and MS/MS or positive ion/negative ion chemical ionization (PPINICI) allow you to acquire both types of data in a single injection. Variable damping gas, an option available exclusively on the ITQ Series, further improves GC/MS sensitivity up to 5X or more across a broad range of real-world samples. Data Dependent™ scanning allows you to quickly collect data, confirm the identity of compounds, and further reduce sample cleanup costs.

TriPlus RSH mounted on a TRACE 1310 GC and ITO 1100 Ion Trap MS

Ion Source Spare Parts

Description	Cat. No.	Quantity
Magnet support thumbscrew	76483-0125	1
Compression spring	76485-0032	1
Set screws	76905-0405	1
Magnet support yoke	119650-0710	1
Magnet	1R70001-98195	1
lon volume holder, standard	70001-20532	1
lon volume, El	119650-0220	1
lon volume, Cl	119650-0230	1
lon volume, EI/CI combo	119650-0240	1
lon volume, closed exit (CEI)	119650-0221-T	1
lon volume holder, CEI only	70001-20532-T	1
Lens heater ring	119650-0422	1
Lens assembly, complete	119650-0150	1
Lens holder	119650-0420	1
Lens 1	119650-0414	1
Lens 2	119650-0416	1
Lens 3	119650-0418	1
Lens spacer	119650-0426	1
Lens retainer clip	119650-0428	1
Filament	120320-0030	1
Filament spacer/insulator	119650-0235	1
Filament retainer clip	120320-0050	1
Ion source PCB	96000-60087	1
lon source block	119650-0205	1
lon volume key thumbscrew	119650-0206	1
Heater RTD Spring	96000-20176	1
Heater RTD spring thumbscrew	119650-0208	1

Ion Trap Spare Parts

Description	Cat. No.	Quantity
Endcap electrode	119650-0520	1
Spacer	119650-0540	1
Ring electrode	119650-0525	1
Exit lens	119650-0530	1
Exit lens spacer	119650-0515	1
Helium inlet	119650-0532	1

Inlet Valve (Upgrade Option)

Description	Cat. No.	Quantity
Ball valve seal replacement kit	76461-2002	1
Inlet valve seal replacement kit	119265-0003	1

Mechanical (Rotary-vane) Pump

Description	Cat. No.	Quantity
Oil, rotary-vane pump, 1L	A0301-15101	1

Accessories

Description	Cat. No.	Quantity
Allen wrench kit, metric	3812-0100	1
Aluminum oxide	32000-60340	1
Calibration compound (perfluorotributylamine)	50010-30059	1
Back ferrule, 1/8in., brass	A0101-02500	1
Column measuring tool	119640-0550	1
lon volume tool	119270-0001	1
Front ferrule, 1/8in., brass	A0101-08500	1
Test mix, octafluoronapthalene and decafluorobenzophenone (DFBZ)	120420-TEST	1
Transfer line ferrule, 1/16in to 0.4mm, graphite/vespel	A0101-18100	1

Polaris *Q* External Ionization Ion Trap GC/MS*

- Stop matrix interference with the power of MSⁿ
- · Outstanding sensitivity in full scan mode
- Reliability, robustness, and library-searchable data from external ionization source

The Thermo Scientific^{∞} Polaris \mathcal{Q}^{∞} is a high quality benchtop ion trap GC/MS system with El, Cl, Negative Cl, MS/MS and direct sample probe capability. Proprietary Pulsed Positive Ion/Negative Ion Chemical Ionization (PPINICI) and variable buffer gas options enhance ppb sensitivity and performance in the toughest sample matrices. External ionization ensures data integrity, while providing robust, reliable performance.

Ion Source

Description	Cat. No.	Quantity
CI ion volume	119650-0230	1
El ion volume	119650-0220	1
EI/CI combo ion volume	119650-0240	1
Filament	119701-60287	1
Filament spacer	119650-0235	1
Ion source PCB	96000-60087	1
lon volume holder	70001-20532	1

Mechanical (Rotary-Vane) Pump

Description	Cat. No.	Quantity
Oil, rotary-vane pump, 1L	A0301-15101	1

Inlet Valve (Upgrade Option)

Description	Cat. No.	Quantity
Ball valve seal replacement kit	76461-2002	1
Inlet valve seal replacement kit	119265-0003	1

Accessories

Description	Cat. No.	Quantity
Allen wrench kit, metric	3812-0100	1
Aluminum oxide	32000-60340	1
Back ferrule, 1/8in., brass	A0101-02500	1
Calibration compound	50010-30059	1
Filament	119701-60287	1
Front ferrule, 1/8in., brass	A0101-08500	1
Test mix, 100ng/µL decafluorobenzophenone, benzophenone, methyl stearate	A0301-23057	1
Test mix, 100pg/μL, 10pg/μL, and 1pg/μL decafluorobenzophenone	96000-98044	1
Transfer line ferrule, 1/16in. to 0.4mm, graphite/Vespel	A0101-18100	1

^{*} Please note that the system is no longer available for sale but is supported by the above products.

TSQ 8000 GC-Triple Quadrupole MS

- Unique Full source Removal[™] capability delivers maximum uptime and unstoppable productivity
- ExtractaBrite™ solid, inert ion source provides robust operations and low detection limits
- Unprecedented ease of use with innovative AutoSRM software

The Thermo Scientific™ TSQ™ 8000 Gas Chromatograph/Triple Quadrupole Mass Spectrometer offers the easiest way to achieve the lower detection limits and reduced sample preparation allowed by selected reaction monitoring (SRM). The TSQ 8000 GC-MS/MS is the first triple quadrupole GC-MS/MS system to offer an extractable ion source under vacuum and software that fully automates SRM development.

Ion Source Accessories

Description	Cat. No.	Quantity
El Source Cartridge	1R120404-4100	1 Each
lon Volume, El	1R120404-4111	1 Each
Ion Volume, CI	1R120404-4112	1 Each
Ion Volume, EI/CI Combo	1R120404-4113	1 Each
Dual Filament	1R120404-1900	1 Each

Column Components

Description	Cat. No.	Quantity
Graphite Vespel Ferrule for 0.25mm columns	1R76458-2016	10 Pack
Graphite Vespel Ferrule for 0.32mm columns	1R76458-2019	10 Pack
Graphite Vespel Ferrule for 0.53mm columns	1R76458-2020	10 Pack
2-hole Graphite Vespel Ferrule for < 0.32mm column	1R76458-2018	10 Pack
No-hole Graphite Vespel ferrule	1R76458-2009	10 Pack
SilTite ferrule for 0.10-0.25mm ID column	1R76458-2000	10 Pack
SilTite ferrule for 0.32mm ID column	1R76458-2024	10 Pack
SilTite ferrule for 0.53mm ID column	1R76458-2026	10 Pack
Nut for SilTite ferrules	1R76458-2001	5 Pack
Nickel-coated nut for Graphite Vespel ferrule	1R76458-0060	5 Pack
Spring loaded transferline nut	1R120434-0010	1 Each

Mechanical (rotary-vane) pump

Description	Cat. No.	Quantity
Oil, rotary-vane pump	A0301-15101	1 Each

Accessories

Description	Cat. No.	Quantity
Aluminium oxide	32000-60340	1 Each
Calibration compound (perfluorotributylamine)	50010-30059	1 Each
Forceps	1R76360-0008	1 Each
Tool Kit (Does not include exchange tool)	1R120467-0001	1 Each
Source Exchange Tool	1R120406-2000	1 Each
Column Measuring Tool	1R120461-0010	1 Each
Manifold o-ring	1R3815-360	1 Each
Vent valve o-ring	1R3814-111	1 Each
Oil mist filter	1R76505-0036	1 Each
Electron Multiplier	1R76022-14633	1 Each
T10 Torxhead Key	1R3812-5T10	1 Each
T20 Torxhead Key	1R3812-5T20	1 Each
T30 Torxhead Key	1R3812-5T30	1 Each

Thermo Scientific GC Instrument Accessories & Consumables

TSQ Quantum GC, TSQ Quantum XLS and TSQ Quantum XLS Ultra, Triple Quadrupole GC-MS/MS

- Higher compound sensitivity
- More matrix selectivity
- More productivity

The Thermo Scientific™ TSQ™ Quantum GC Series GC-MS/MS have set the standard for modern day GC-triple quadrupoles in terms of sensitivity, selectivity and software innovation. The TSQ Quantum GC Series instruments are led by the TSQ Quantum XLS Ultra GC-MS/MS, which offers unprecedented sensitivity and spectral resolution, putting this instrument in a product class by itself.

Ion Source Accessories

Description	Cat. No.	Quantity
lon volume, El	70111-22036	1
lon volume, Cl	70111-22037	1
lon volume, closed exit (CEI)	70111-22202	1
lon volume, closed exit (CEI)	70111-22147	1
lon volume holder	70001-20532-T	1
Filament	120320-0030	1

Other Accessories

Description	Cat. No.	Quantity
Allen wrench kit, metric	3812-0100	1
Aluminum oxide	32000-60340	1
Forceps	76360-0400	1
Calibration compound (FC-43)	50010-30059	1
Electron multiplier, with flange 7	0001-98175	1
Kit, calibration compound vial	120433-0001	1

Inlet Valve

Description	Cat. No.	Quantity
Ball valve seal replacement kit	76461-2002	1
Inlet valve seal replacement kit	119265-0003	1

Mechanical (Rotary-Vane) Pump

Description	Cat. No.	Quantity
Oil, rotary-vane pump, 1L	A0301-15101	1

DFS High Resolution GC/MS

- Ultra high sensitivity analysis of dioxins, BFRs and other POPs
- Application flexibility with up to 4 GC columns
- High throughput double the samples with dualData G2

The Thermo Scientific™ DFS™ high resolution GC-MS is the most advanced magnetic sector, high resolution mass spectrometer ever built for target compound analysis and for solving general organic analytical questions.

High Resolution MS General Spares, DFS

ingii nocoration mo donorai oparoo, bi o		
Description	Cat. No.	Quantity
Filament, El Operation, Tungsten, for DFS	1062950	1
Filament, CI Operation, Rhenium, for DFS	1062960	1
lon volume for El operation	1082100	1
lon volume for CI operation	1082200	1
Ion volume for ACE operation	1082250	1
Ion volume for FAB operation	1082240	1
SEM Unit, electron multiplier for DFS	1090010	1
DIP aluminum crucibles for solid samples	0568761	200
Septum 12.5 PTFE coated	0553371	1
Source heater	0491940	1
Ferrule Vespel 1/16" transfer line	0492490	1
Plug-in Ion Source	1176900	1
Ion Volume Exchange Support	1062700	1
POPs confirmation consumables starter kit for TRACE 1310 and TriPlus RSH (includes 60m column, liners, ferrules, septa and syringes)	TS-MKITG503	1
Replacement FAB Cesium emitter	0704510	1
DFS Chemicals Kit and Mass Calibration Standards	1193400	1

High Resolution MS General Spares, DFS

Description	Cat. No.	Quantity
DIP aluminum crucibles for liquid samples	0568770	200
DIP aluminum crucibles for liquid samples, caps	0568780	200
DIP gold crucibles	0574200	1
DIP-HT quartz crucibles	1006070	10
DCI wire units	0744860	1

GC Technical Information

GC Method Selection and Optimization

The following flow chart briefly describes the common steps in GC method development and optimization.

Start Identify applicati	view ons library tions index Suitable application found? Yes	Preliminary method development – TraceGOLD TG-5MS	NIETHOO Validate
	Method op	otimization	
Improve sensitivity	Increase retention	Improve resolution	Increase speed
Increase injection volume	Reduce temperature ramp rate Increases the distribution co-efficient and increases analyte dwell time in the stationary phase	Reduce temperature ramp rate Increases the distribution co-efficient and increases analyte dwell time in the stationary phase	Increase temperature ramp rate Reduces the distribution constant, analytes spend less time in the stationary phase
Reduce film thickness Produces sharper peaks	Reduce carrier linear flow rate Increases interaction with the stationary phase. Increases retention and resolution, but also peak broadening.	Reduce carrier linear flow rate Increases interaction with the stationary phase. Increases retention and resolution, but also peak broadening.	Increase carrier linear flow rate Decreases interaction with the stationary phase
Reduce column diameter Reduces HETP and increases pressure to maintain linear flow rate	Increase film thickness More interaction with the sample	Change column dimensions Longer column, smaller ID	Shorter column Shorter analysis time
	Change the phase More polar columns retain polar compounds better and vice versa	Increase film thickness Can provide discrimination based on time spent in stationary phase	Decrease film thickness Analytes spend less time in the stationary phase
	Increase column length Maintain linear velocity	Change the phase More polar columns retain polar compounds and vice versa providing analyte discrimination	Consider UltraFast GC Can reduce analysis time by a factor of 20

GC Troubleshooting

Before you start any troubleshooting, it is essential to observe safe laboratory practices. Know the chemical and physical properties of any solvents used and have the appropriate Material Safety Data Sheets (MSDSs) readily available. All electrically powered instruments should be shut down and unplugged before starting. Eye protection should also be worn.

The following table lists common GC problems encountered, the possible causes and solutions for your quick reference.

Symptom	Cause	Recommended Solutions
Baseline Related	l Problems	
Baseline Drifting	Accumulation of stationary phase.	Remove the end section of the column.
	Carrier gas cylinder pressure too low to allow control.	Replace the carrier gas cylinder. Increase the pressure.
	Drifting carrier gas or combustion gas flows.	Check the gas controllers.
	Accumulation of impurities in the column.	Check impurity levels in the gas source. Use correct gas purity. Replace or install appropriate Gas Filters (see page 3-080).
Baseline Falling	Carrier gas leak in the system.	Perform a leak test. Check the tightness of the connections on the carrier gas line.
	Column is baking out.	Allow enough time for the column to stabilize.
Baseline Falling	Purge valve left closed during acquisition.	Alter the GC program. See your GC user manual for details.
Away Slowly	Inadequate purge flow rate.	Increase the purge flow rate.
After a High Initial Value	Purge valve left closed for too long.	Shorten the purge time.
IIIIIai value	Solvent tail peak.	Increase the solvent delay. Shorten the purge time.
	Pre-filters are dirty. (when using a quadrupole MS detector)	Contact your service representative.
Baseline Rising	Accumulation of impurities in the column.	Check impurity levels in the gas source. Use correct gas purity. Replace or install appropriate Gas Filters (see page 3-080).
	Contaminated detector.	Check the detector and clean it.
	There is bleeding from the GC column.	Condition column. Change the column.
	Air is leaking into the system.	Trace and repair the leak.
Baseline Rising Under Temperature Program Control	Column contaminated.	Recondition the column.
Baseline High	Carrier gas flow rate too high.	Reduce the carrier gas flow.
Standing Current	Column contaminated.	Recondition the column.
	Contaminated gases.	Replace gas cylinders. Replace the gas filters.
	Excessive column stationary phase bleeding.	Check the oven temperature, ensuring that it doesn't exceed the column upper limit. Recondition the column. Replace the column.
	Loose connections.	Ensure that all interconnections and screw connections are tight.
Baseline Irregular Shape: Dip After Solvent Peak	Detector contaminated.	Bake out the detector. Clean the detector.
Baseline Irregular Shape: S-shaped	Excessive column bleed during column temperature programming.	Reduce the upper column temperature. Bake out the column. Install a high temperature column.
	Oxygen contamination is decomposing	Install oxygen filters in the carrier gas line. Check the pneumatic and inlet
	the stationary phase.	systems for leaks. Use correct gas purity with low oxygen content.
Baseline High	Contaminated detector.	Isolate the detector from the electronics. If noise disappears, clean the collector.
Frequency Noise	Combustion gas flow too low or too high.	Check the detector gas flows.
	Column contaminated.	Condition the column.
	Contaminated detector gas supply.	Check the gas purity and install appropriate filters.
	Detector temperature higher than column maximum temperature.	Reduce the detector temperature to the column temperature upper limit.
	Loose column fittings.	Tighten fittings accordingly.
Baseline Spiking	Column too close to flame. (when using an FID)	Lower the column to the correct position (2-3mm below the tip of the jet).
	Dirty jet or detector.	Isolate the detector from the electronics. If the spiking disappears, clean the jet and the collector.
	FID temperature too low. (when using an FID)	Increase the FID temperature to at least 150°C.

Symptom	Cause	Recommended Solutions	
Peak-Related Pro	oblems		
Peaks Broadening	Column flow too high.	Reduce the flow to slightly above optimum.	
	Column flow too low.	Increase the flow to slightly above optimum.	
	Split flow too low in split injection.	Increase the flow to 40-50mL/min.	
	Column performances degraded.	Test the column at the optimum flow rate.	
	Dirty injector.	Clean or replace the liner.	
	Stationary phase accumulated in the outlet.	Remove the last two coils from the column.	
	Detector base body temperature too low.	Increase the temperature to 5°C below the column maximum.	
	The sample is overloading the column.	Reduce the amount and/or concentration of the sample.	
Double Peaks	Injection speed too low.	Inject more rapidly in a smooth motion.	
	Wrong autosampler injection speed or mode.	Use a higher speed.	
Peak Fronting	Column or detector overloaded.	Decrease the injected amount. Decrease the analyte concentrations. Increase the split ratio.	
	Column temperature too low.	Increase the temperature.	
	Stationary phase too thin.	Use a thicker-film column.	
	Poor injection technique.	Repeat, with better injection technique.	
Ghost Peaks	Contaminated carrier gas.	Replace the cylinder. Replace the filter (see page 3-080).	
	Contamination from laboratory glassware.	Ensure the glassware is clean and contamination-free.	
	Decomposition of injected sample.	Decrease the injection port temperature. Use the on-column injection technique	
	Dirty injection solution.	Carry out adequate clean-up of sample prior to injection.	
Broad Ghost Peaks	Contaminated inlet or pneumatics.	Remove the column and bake out the inlet. Use a high-quality septum. Replace the split vent filter. Install an in-line filter between the pneumatics and the inlet.	
	Incomplete elution of previous sample.	Increase the final oven program temperature or total run time. Increase the column flow rate.	
rregular, Chair- shaped Peaks	Solvent flooding of column.	Increase the initial oven temperature. Reduce the injection volume (On-column). Install a retention gap (On-column).	
No Peaks After	Carrier gas flow too high.	Reduce the carrier gas flow rate.	
Solvent Peak	Combustion gas flow incorrect.	Check the combustion gas flow.	
	Detector contaminated.	Bake out or clean the detector.	
	FID flame extinguished by solvent peak.	Check the detector temperature and that flame is lit.	
	Too much sample injected.	Inject less sample.	
	Incorrect column position in S/SL injector (too high).	Check the column position.	
No Peaks at All	Clogged syringe needle.	Replace or repair the syringe.	
	Column broken or disconnected.	Check the column and connections.	
	Defective electrometer or amplifier.	Check electrometer or amplifier and associated connections. Replace if required	
	Defective recording device.	Replace the recording device.	
	FID flame is out.	Clean FID jet, check detector gas flows and re-light flame.	
	Incorrect column position in S/SL injector (too high).	Check the column position.	
Sample Peak	Column degradation causing activity.	Inject a test mixture and evaluate the column.	
Tailing	Column/oven temperature too low.	Increase the column/oven temperature. Do not exceed the recommended maximum temperature for the stationary phase.	
	Column contaminated at inlet.	Trim first 10-20cm from column and re-install in injector.	
	Glass wool or inlet liner causing activity.	Replace with fresh silanized wool and a clean inlet liner.	
	Inlet temperature too low.	Increase the inlet temperature.	
	Poor or obstructed column connections.	Remake the column inlet connection.	
	Wrong stationary phase.	Replace the column according to the column manufacturer's literature.	
Solvent Peak	Incorrect column position in inlet.	Reinstall the column.	
Tailing	Initial oven temperature too high (On Column).	Reduce the initial oven temperature.	
-	Septum purge flow too low and/or split/splitless vent flow too low.	Check and adjust the septum purge and vent flows.	
	Too large injection size.	Reduce the injection size.	

GC Troubleshooting continued

Symptom	Cause	Recommended Solutions		
Unresolved	Carrier gas flow rate too high.	Reduce the carrier gas flow rate.		
Peaks	Column deteriorated.	Replace the column.		
	Column temperature too high.	Lower the column oven temperature.		
	Column too short.	Use a longer column.		
	Incorrect column choice.	Install a suitable column.		
	Injection technique is not adequate.	Choose a correct injection technique.		
Discrete	Bleed from the GC column.	Condition or change the column.		
High-intensity	Bleed from the septum.	Replace the septum.		
Contaminant Peaks	Sample vial septa are contaminating the sample.	Discard sample. Store samples upright, in a refrigerator. Use Teflon™ face septa, with the Teflon facing downwards (i.e. towards the sample).		
Results-Related	Problems			
Low	Concentration not compatible with the dynamic	Ensure that the sample concentration is suitable for the detection system.		
Reproducibility	range of the detection system.	Ellouro tilat tilo campio concentration io cartable for the detection system.		
of Peak Area	Inappropriate injection technique.	Try a different injection technique.		
	Injection parameters inappropriate.	Check the injection temperature. Check the flow rates.		
	Non reproducible sample injection technique.	Evaluate the sample preparation sequences. Compare the results with a series of standard injections.		
	Leaking syringe or septum.	Check and replace the syringe at regular intervals. Check and replace septum at regular intervals.		
	Leaks at the injection.	Check the column connections. Run a leak check.		
	Poor injection technique.	Carefully meter the injected amount. Use a clean, good-quality syringe.		
	Poor split flow or ratio control.	Monitor the flow. Replace the in-line filter.		
Poor Sensitivity Increased Retention Time	Carrier gas flow rate too low.	Increase the carrier gas flow rate. Locate and remove possible obstruction in the carrier gas line. Check the injector/column ferrules.		
Poor Sensitivity	Oven or injector parameters are not optimized.	Adjust the oven parameters. Adjust the injector parameters.		
with Normal	Leaks in the GC carrier gas line.	Run a leak test and correct leaks.		
Retention Time	Syringe leaks during injection.	Replace syringe or piston seals, if applicable.		
	Split injection temperature too low.	Increase the temperature of the injector.		
	Column is in poor condition, or wrong column type used.	Condition the columns. Change the column.		
Retention Times Decreasing	Stationary phase deteriorated by oxygen and/or water.	Use a carrier gas free of oxygen and water. Replace or install appropriate gas filters (see page 3-087 to 3-089).		
	Stationary phase loss due to column bleeding.	Reduce the column temperature.		
Retention Times	Increasing carrier leakage.	Check the septum and column connections.		
Increasing	Carrier gas supply running out.	Replace the bottle.		
Low	Drifting or unstable pneumatic controller.	Monitor the column pressure or flow.		
Reproducibility of		Check and replace the controller if necessary.		
Retention Times	Poor injection technique.	Start the run at consistent time after injection.		
	Sample size is too large.	Reduce the injected amount and/or volume.		
	Unstable column temperature.	Check the main oven door and cooling flap. Monitor the column temperature.		
Retention Times	GC column is in poor condition.	Condition the column. Change the column.		
are Inconsistent	Insufficient equilibration time set on GC.	Increase equilibration time.		
	Poor injection.	Repeat with better injection technique.		
	Oven temperature programmed to rise too quickly.	Reduce oven temperature ramp rate.		
	Air is leaking into the system at the injector seal or the carrier gas manifold.	Trace and repair the leak.		

GC Equations

Adjusted Retention Time (t_R')

An analyte's retention time (t_R) minus the elution time of an unretained peak (t_m) .

$$t_R' = t_R - t_m$$

Adjusted retention time is also equivalent to the time the analyte spends in the stationary phase.

Capacity Factor (k)

Expression that measures the degree of retention of an analyte relative to an unretained peak, where $t_{\rm R}$ is the retention time for the sample peak and $t_{\rm m}$ is the retention time for an unretained peak. A measurement of capacity will help determine whether retention shifts are due to the column (capacity factor is changing with retention time changes) or the system (capacity factor remains constant with retention time changes).

$$k = \frac{t_R - t_m}{t_m}$$

Thus, the higher the capacity factor, the longer the retention time.

Effective Theoretical Plates (Neff)

A measure of a column performance that accounts for the effects of unretained elution time, where t_{R} ' is the adjusted retention time and σ is the standard deviation of the peak.

$$N_{eff} = \left(\frac{t_R}{\sigma}\right)^2$$

This value also remains constant as retention gaps and guards are used. Depending on the method of peak width calculation, different efficiencies can be reported. This leads to two popular measures:

$$N_{eff} = 16 \left(\frac{t_R}{W}\right)^2$$

Where W is the tangential peak width (13.4% peak height).

$$N_{eff} = 5.54 \left(\frac{t_R}{W}\right)^2$$

Where W is the width measured at half height (50% peak height).

HEEP (Heff)

Height Equivalent to an Effective Plate.

$$H_{\text{eff}} = L/N_{\text{eff}}$$

Where L is the column length. The smaller the N_{eff} , the more efficient the column's performance.

HETP (H)

Height Equivalent to a Theoretical Plate is a measure of column efficiency where L is the column length and N is the number of theoretical plates.

$$H = L/N$$

HETP is based on actual (t_R) rather than adjusted retention times (t_R) .

Linear Velocity (u)

Mobile phase flow rate expressed in cm/s and is expressed as:

$$u = L/t_m$$

Where L is the column length and t_m is the breakthrough time of an unretained peak.

Phase Ratio (β)

The ratio of the volume of mobile phase to the stationary phase. An important value when changing the column dimensions in a method.

$$\beta = \frac{\text{column ID (}\mu\text{m})}{4 \text{ x film thickness (}\mu\text{m})}$$

Resolution

A measure of the separation of two peaks taking into account both the difference in elution time and the peak widths.

$$R_s = \frac{(t_2 - t_1)}{0.5(W_1 + W_2)}$$

Where t_2 and t_1 are the two retention times, and W_1 and W_2 are baseline peak widths.

Selectivity (α)

The relative retention of two adjacent peaks. Selectivity can be calculated using capacity factor.

$$\alpha = \frac{k_2}{k_1}$$

Trennzahl Number

A value to describe a separation. The Trennzahl number is calculated from the resolution between two consecutive homologous hydrocarbons. The Trennzahl number represents the number of peaks that can be included between the two hydrocarbon peaks.

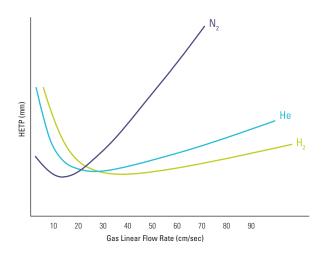
$$T_z = \left(\frac{t_{R2} - t_{R1}}{(W_h)_1 + (W_h)_2}\right) - 1$$

Where t_R equals analyte retention time and W_h equals peak width at half height.

van Deemter Equation

This is a relationship that considers the effect of linear velocity on the HETP or H, where A accounts for eddy diffusion, B describes the molecular diffusion of the vapor in the direction of the column axis, C refers to the resistance to transfer from the stationary to mobile phase and u is the linear velocity of the mobile phase.

$$H = A + \frac{B}{U} + Cu$$


Carrier Gas Choice

The choice of carrier gas is a compromise between a number of considerations, among them, efficiency and speed as well as availability, safety and cost. The three most common carrier gases used are nitrogen, helium and hydrogen.

Nitrogen shows the lowest HETP, making it the most efficient of the gases. High quality nitrogen is readily available and inexpensive compared to other options. However, the optimum flow rate to achieve nitrogen's very low HETP leads to long analysis times (see figure).

Helium has a slightly lower efficiency than nitrogen, but the optimum flow rate is higher. Also small changes in flow rate of helium around the optimum will not affect efficiency as greatly as with nitrogen.

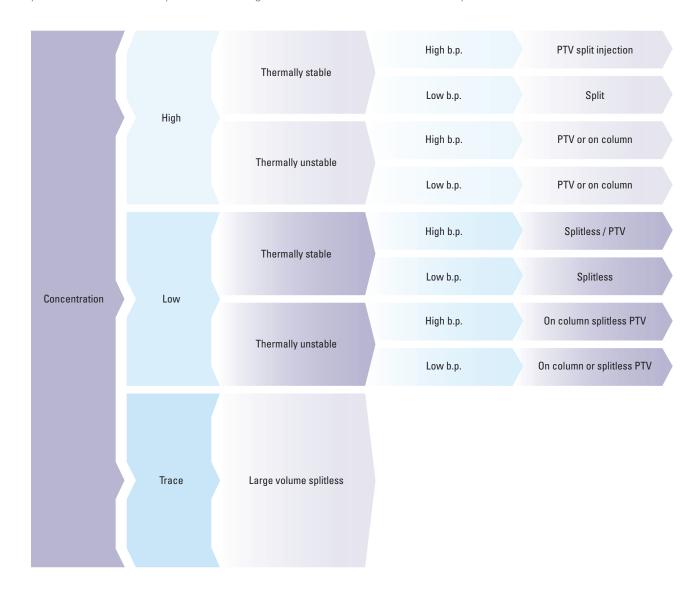
For many, hydrogen is the carrier gas of choice. It shows higher efficiency than helium and at a higher flow rate. The variation in HETP with changes in flow rate is also far lower, making it more forgiving and reproducible. There is, however, a slight risk of an explosive atmospheric build-up in the oven.

A van Deemter plot of efficiency against linear flow rate for three carrier gases.

Recommended Flow Rates and Velocities for Capillary Columns

Carrier Gas	0.25n	nm ID	0.32r	nm ID	0.53r	nm ID
	mL/min	cm/min	mL/min	cm/min	mL/min	cm/min
He	1	35	1.7	35	6	35
H ₂	1.6	50	2.6	50	7.5	50
N_2	0.4	14	0.5	11	0.9	7

Recommended Detector Gas Flow Rates


Detector	Air (mL/min)	H ₂ (mL/min)	Make Up (mL/min)
ECD	-	_	35-40
FID	350	35	30
NPD	60	2.5	15
FPD	100	75	30

Unretained Compounds

•	
Detector	Analyte
FID	Methane
ECD	Methylene Chloride
NPD	Acetonitrile
TCD, MS	Methane, Butane
PID, ELCD	Vinyl Chloride

Selection of Injection Method

The identification of the most appropriate injection method relies on the sample type and the boiling point to be used in the separation. The diagram below summarizes this selection process:

Column Conditioning (All Columns Except TraceGOLD, TG-WaxMS, TRACE TR-1MS and TR-WaxMS)

It is recommended that before the column is subjected to any thermal gradients, all oxygen has been removed because the presence of oxygen in the system can shorten the column lifetime. Removal of oxygen can be achieved by purging the columns with oxygen-free carrier gas for a minimum of 20 minutes at 40°C using an approximate head pressure of 100kPa.

Although all Thermo Scientific columns have been pre-conditioned, we recommend that they are conditioned after installation by following these steps:

- 1. Heat the column from 50°C to the maximum operating temperature at 5°C/min. and hold for one hour. The maximum operating temperatures for all TRACE GC columns are provided below. It is important to stay within the maximum temperature range for the column.
- 2. Monitor the detector signal during conditioning until a stable baseline is reached. Due to the factory pre-conditioning of the column, this should be achieved in approximately one hour. This duration may be longer in the case of thick films and polar phases.

Maximum Operating Temperatures for TraceGOLD and TRACE GC Columns

maximum operating	Tomporataroo for Traoococo and T
Column	Maximum Operating Temperature
TG-1MS	330°C / 350°C
TG-XLBMS	360°C
TG-5MS	330°C / 350°C
TG-SQC	330°C / 350°C
TG-5MS AMINE	300°C / 315°C
TG-5SILMS	330°C / 350°C
TG-5HT	380°C / 400°C
TG-35MS	300°C / 320°C
TG-35MS AMINE	220°C
TG-17MS	300°C / 320°C
TG-17SilMS	340°C / 360°C
TG-1301MS	260°C / 280°C
TG-624	240°C
TG-624SilMS	320°C
TG-VRX	260°C
TG-VMS	260°C
TG-1701MS	260°C / 280°C
TG-225MS	240°C
TG-200MS	320°C / 340°C
TG-POLAR	275°C
TG-WaxMS	260°C
TG-WaxMS A	250°C
TG-WaxMS B	220°C
TG-Dioxin	340°C
TG-OCP I / TG-OCP II	340°C
TG-OPP I / TG-OPP II	330°C
TG-ALC I / TG-ALC II	260°C
TG-1MT	430°C
TG-5MT	430°C
TG-WaxMT	260°C

Column	Maximum Operating Temperature
TR-1MS	340°C / 360°C
TR-5	320°C / 340°C for films ≤ 1.5µm
	280°C / 300°C for films > 1.5μm
TR-5MS	360°C / 370°C for films ≤ 1.5µm
TD FIIT	350°C / 360°C for films > 1.5µm
TR-5HT	380°C / 400°C
TR-35MS	330°C / 360°C
TR-1701	280°C / 300°C
TR-50MS	360°C / 370°C
TR-225	230°C / 250°C
TR-Wax	260°C / 280°C for films ≤ 1.0µm 240°C / 260°C for films > 1.0µm
TR-WaxMS	
TR-FFAP	260°C / 280°C
IN-FFAF	240°C / 250°C 400°C for films ≤ 1.0μm
TR-SimDist	370°C for 2.65µm films
TR-V1	280°C / 300°C
TR-FAME	250°C / 260°C
TR-524	240°C / 260°C
TR-525	340°C / 360°C
TR-527	330°C / 350°C
TR-8095	360°C / 370°C
TR-8270	330°C / 350°C
TR-PCB 8MS	330°C / 350°C
TR-Dioxin 5MS	330°C / 350°C
TR-Biodiesel (M)	300°C / 320°C
TR-Biodiesel (F)	280°C / 300°C
TR-Biodiesel (G)	380°C / 400°C
TR-DoA5	330°C / 350°C
TR-DoA35	330°C / 350°C
TR-Pesticide	330°C / 350°C
TR-Pesticide II	330°C / 350°C
TR-Pesticide III	300°C / 320°C
TR-Pesticide IV	300°C / 320°C

Column Conditioning for the TraceGOLD, TG-WaxMS, TRACE TR-WaxMS and TR-1MS Columns

This procedure will ensure an ultra low bleed for the column's entire lifetime and is only required once. Once performed, future installation of the column need only be followed by a 30-minute hold at the maximum temperature limit.

After installing the column according to the instrument manufacturer's instructions, follow the procedure below.

Steps	TG-WaxMS/TR-WaxMS	TR-1MS
1	Equilibrate the column at 40°C with carrier gas flow for 20 minutes, purging air content.	Equilibrate the column at 40°C with carrier gas flow for 20 minutes, purging air content.
2	Raise the temperature to 100°C at 5°C/min.	Raise the temperature to 100°C at 5°C/min.
3	Hold for 30 minutes.	Hold for 30 minutes.
4	Raise to 150°C at 5°C/min.	Raise to 150°C at 5°C/min.
5	Hold for 30 minutes.	Hold for 30 minutes.
6	Raise to 200°C at 5°C.	Raise to 250°C at 5°C.
7	Hold for 40 minutes.	Hold for 40 minutes.
8	Raise to 250°C at 5°C/min.	Raise to 300°C at 5°C/min.
9	Hold for 40 minutes.	Hold for 40 minutes.
10	Raise to 280°C at 5°C/min.	Raise to 360°C at 5°C/min.
11	Hold for 30 minutes.	Hold for 30 minutes.

Although quite a long procedure, it will result in longer lifetimes and lower bleed for your column.

Performance Recovery

The performance of the column may exhibit signs of deterioration over time as a result of many different causes. Some of these, such as contamination by high boiling or strongly retained compounds, can be cleared by repeating the column-conditioning until a stable baseline is achieved.

Other contamination such as non-volatile compounds, pieces of septa or ferrule metal can result in poor peak shape due to band broadening at the injection step. This can be cured by the removal of a section from the front end of the column. The amount removed is dependent on the degree of contamination, the size of injection and the ID of the column,

but generally 50cm should be sufficient. As the efficiency of the column is proportional to the square root of its length, the removal of the front end will not lower the separation effectiveness by the same ratio as 50cm/column length. A last resort in column regeneration is column washing. Column washing uses a pressurized vessel to force solvent through the column in a reverse direction. The selection of the solvent is dependent on the nature of the samples that have been analyzed and therefore the contamination. It is also dependent on the stationary phase. Generally, 2mL of pentane is suitable for non-polar contamination with methanol used for more polar samples.

Resources for Chromatographers

Chromatography Resource Center

Our web-based resource center provides technical support, applications, technical tips and literature to help move your separations forward.

Visit www.thermoscientific.com/chromatography

How to order

USA and Canada

800 332 3331 865 354 4616 fax

France

+33 (0)1 60 92 48 34 +33 (0)1 60 92 49 00 fax Consommableslcgcfr@thermofisher.com

Germany

+49 (0) 2423 9431 -20 or -21 +49 (0) 6103 408 1111 fax lcgc.consumables.DE@thermofisher.com

United Kingdom

+44 1928 534110 +44 1928 534001 fax lcgc.consumables@thermofisher.com

China

+86 800 810 5118 or +86 400 650 5118 Shanghai: +86 21 68654588 Bejing: +86 10 84193588 Guangzhou: +86 20 83145188 analyze.cn@thermofisher.com

India

+91 22 6742 9494 +91 22 6742 9495 fax analyze.in@thermofisher.com

Japan

0120 753 670 (free call domestic) 0120 753 671 fax analyze.jp@thermofisher.com

Thermo Fisher Scientific Australia Pty Ltd

1300 735 292 (free call domestic) 1800 067 639 fax AUinfo@thermofisher.com

Thermo Fisher Scientific New Zealand Ltd

0800 933 966 (free call domestic) 0800 329 246 fax nzinfo@thermofisher.com

All Other Enquiries

+44 (0) 1928 534 050 +44 (0) 1928 534 049 fax salesorders.columns.uk@thermofisher.com

Technical Support

For advice and support, please visit our website: www.thermoscientific.com/chromexpert

For more information visit: www.thermoscientific.com/chromatography

